1. An electric quadrupole is four charges arranged on the corners of a square as shown. This system has zero monopole strength (zero net charge) and zero dipole moment.

(a) Draw 8 electric field lines per charge.
(b) Determine the electric field $\vec{E}(x)$ at points on the x axis.
(c) Find a simple form for $\vec{E}(x)$ for points far away on the x axis $x \gg a$. (Hint: binomial expansion.)

2. A solid spherical insulator has radius a and constant charge density ρ.

(a) Derive the potential $V_{\text{out}}(r)$ outside the sphere. Let $V_{\text{out}}(\infty) = 0$.
(b) Derive the potential $V_{\text{in}}(r)$ inside the sphere.
(c) Draw equipotential contours, three inside and three outside. (Remember that the separation ΔV between contours is constant.)

3. Two long parallel wires each have radius a and are separated a distance d, where $d \gg a$. Determine the capacitance per length c.

4. A hollow cylinder has outer radius r, wall thickness w and length L. It is made from a material with electrical conductivity σ. Determine the resistance R of the cylinder when its ends are connected to a battery of voltage V.

5. A regular tetrahedron is made of 6 wires, each wire having resistance R. Find the effective resistance R_{eff} between any two vertices.