1) A Rb atom (electron spin $\frac{1}{2}$) collides with a Xe atom; during the collision the electron couples to the rotational angular momentum N (which you can assume is a fixed classical vector during the collision) via $H = \hbar \gamma(t)N \cdot S$. Find the probability that an initially spin-up atom changes to a spin-down atom. Write your answer in terms of $\theta = \int \gamma(t)dt$ and average over the directions of N.

2) Suppose there is an external magnetic field Bz applied. Show that the probability from prob 1) is unaffected to first order as long as $\mu_B B \ll \hbar T$, where T is the duration of the collision.

3) During those same collisions, there is also an interaction $\alpha \mathbf{K} \cdot \mathbf{S}$ that causes the nuclear spin ($K = 3/2$) to change states as well. For each of the possible initial m_K, m_S states in which the atoms can collide, calculate the relative probability of making a transition to the possible final states m_K', m_S'.

4) An atom with two states g, e of opposite parity that differ in energy by $\hbar \omega_0$ is subjected to a light field with a frequency chirp: $\omega(t) = \omega_0 + \Delta(t)$. Let the Rabi frequency Ω be constant. Use first-order perturbation theory to calculate the probability that an atom in state g at $t = -\infty$ will be in state e at $t = \infty$. Evaluate the integral for a linear chirp $\Delta(t) = \Delta t$.