1) BD 12.1
2) BD 12.2
3) BD 12.3
4) A system has a time-dependent Hamiltonian \(H(t) = \hbar \omega(t) \). Show that if \([H(t), H(t')] = 0\), the eigenstates \(|\lambda\rangle\) of \(H(t) \) are time-independent.
5) If \(A \) is a matrix, \(e^A \) is defined as \(e^A = \sum_p A^p / p! \). Show that this is equivalent to \(\sum_a e^a |a\rangle\langle a| \), where \(A|a\rangle = a|a\rangle \).
6) Show that if \([H(t), H(t')] = 0\), the general solution to the Schrödinger equation is \(\psi(t) = e^{-i \int_0^t \omega(t')dt'} \psi(0) = U(t) \psi(0) \).
7) When a Rb atom (spin-1/2) and a Xe atom (no spin) combine to form a RbXe molecule, there is an effective magnetic field seen by the Rb electron spin due to the rotation of the two atoms around each other: \(H = \hbar \gamma \mathbf{N} \cdot \mathbf{S} \). Here \(\mathbf{N} \) is a fixed classical angular momentum vector, and \(\gamma \) is a constant with units of frequency.
 a. Suppose the Rb atom is in the \(m_s = 1/2 \) state when the molecule is formed. The molecule lasts a time \(t_1 \) before being broken up by a collision with a different Xe atom. Find the probability \(P(t_1) \) that the Rb atom is in the \(m_s = -1/2 \) state at time \(t_1 \). Express your answer in terms of the angle \(\theta \) between \(\mathbf{N} \) and the z-axis, and \(\alpha = \gamma N t_1 \).
 (Hint: use Mathematica MatrixExp)
 b. The direction of \(\mathbf{N} \) is random; average over \(\theta \) to find the average value of \(P(t_1) \).
 c. According to gas kinetic theory, the probability of an individual molecule lasting time \(t \) is \(p(t) = \frac{1}{\tau} e^{-t/\tau} \). Average over this distribution to find \(P(\tau) \). Plot your result.