I review four optics phenomena and then connect them to special relativity. I thank Professor Lee Pondrom for his insights and for his lecture notes, which form the basis of these notes.

(1) Aberration of starlight

 (a) What is it?

 A star perpendicular to Earth's orbit and lying along the axis of the orbit appears to move around in a small circle as the Earth orbits the Sun.

 Let \(v = \text{speed of Earth in its orbit w.r.t. the Sun} \). Suppose there is a telescope pointing at the star. At time \(t = 0 \) light enters the top of the telescope, and strikes the bottom at time \(t = L \cos \alpha / c \).

 In that time the bottom of the telescope has moved a distance \(v t = L \sin \alpha \).

 \[
 \Rightarrow \quad \frac{v}{c} = \tan \alpha = \frac{\alpha}{10 \text{ radian}} = 0.1 \text{ mrad}
 \]

 Astronomers use degrees, minutes, and seconds of arc, like a clock. 1 second of arc \(= 4.87 \times 10^{-6} \text{ radian} \).

 \[
 \Rightarrow \quad \alpha = 20.5 \text{ second of arc}.
 \]

 This angle follows you around the Earth's orbit. The star seems to move in a small circle. If you know \(v \), which we do, by measuring \(d \) we get the speed of light \(c \).

 Also, since the speed of light \(c \) is taken the same regardless of where you are in the orbit, and the star seems to move in a circle, aberration of starlight was used as evidence against aether theory.
2) Fresnel Drag

Question: Does light go faster in a moving medium?
Answer: Yes. The surprise lies in how fast.

Suppose that water moves at a speed \(v \) along the direction of a beam of light. The speed of light in the water is:

\[u = \frac{c}{n} + v \left(1 - \frac{1}{n^2}\right) \]

where \(n \) is the index of refraction \((n = 1.33 \text{ for water}) \). \(\left(1 - \frac{1}{n^2}\right) \) is called the Fresnel drag coefficient and vanishes if \(n = 1 \). Let us derive this using Einstein's velocity addition theorem:

\[\begin{align*}
 y' &\rightarrow \ y \\
 0' &\rightarrow \ 0 \\
 0 \rightarrow \ 0' \\
\end{align*} \]

In \(O' \), light travels with \(u' = \frac{c}{n} \) (the water).

In \(O \):

\[u = \frac{u' + v}{1 + \frac{u'v}{c^2}} = \frac{\frac{c}{n} + v}{1 + \frac{v}{n^2}} \]

\[= \frac{c}{n} + v \left(1 - \frac{1}{n^2}\right) \]

to \(1 \text{st order in } (v) \).

What follows?
* \(n = 1 \) in vacuum, so there is no Fresnel drag in vacuum.
* This provides strong evidence that Michelson & Morley would see nothing.

3) FIZEAU'S EXPERIMENT

The speed of light in and back:

\[\begin{align*}
 \text{Out: } u_1 &= \frac{c}{n} + v \left(1 - \frac{1}{n^2}\right) \\
 \text{Back: } u_2 &= \frac{c}{n} - v \left(1 - \frac{1}{n^2}\right) < u_1
\end{align*} \]
What are the times out and back?

Out: \(t_1 = \frac{L}{u_1} \)

Back: \(t_2 = \frac{L}{u_2} \)

Time difference \(\Delta t = t_2 - t_1 = L \left(\frac{u_2 - u_1}{u_1 u_2} \right) = \frac{2vL(1-\frac{1}{n^2})}{c/n^2} \)

to first order in \((v/c)\)

\(\Delta t = \frac{2vL}{c^2} (n^2-1) \)

Phase difference \(\Delta \phi = \left(\frac{2\pi c}{\lambda} \right) \Delta L = 4\pi \left(\frac{v}{c} \right) \left(\frac{L}{\lambda^2} \right) (n^2-1) \)

to first order in \((v/c)\).

Put in numbers: \(v = 10 \text{ m/s} \) \(\Rightarrow \frac{v}{c} = \frac{1}{3} \times 10^{-7} \)

\(L = 2 \text{ meter}, \ \lambda = 6 \times 10^{-7} \text{ m} \)

\(\Rightarrow \Delta \phi = 4\pi \times \left(\frac{1}{3} \times 10^{-7} \right) \left(\frac{1}{3} \times 10^{-7} \right) = 1.4 \text{ radians} \)

which is easily observable, and confirmed by experiment.

Note: If \(n=1 \) (vacuum) there is no effect — another clue that the Michelson & Morley experiment would see nothing.

(4) Sagnac's experiment

For many years, this experiment formed the basis for optical gyroscopes used, e.g., in aircraft and other inertia guidance systems.

Suppose a light source and detector are mounted on the rim of an air light pipe in the shape of a circle of radius \(R \). The entire device rotates at an angular speed \(\omega \). The source emits light going both ways around the ring. The light goes around the ring in a time \(t = 2\pi R/\omega \). The time is measured in the rest frame to avoid confusion due to time dilation.
In this time the source & detector have both moved a distance:

$$R \omega t = \left(\frac{2 \pi R^2}{c} \right) \omega$$

So the difference in length that the two light signals travel to reach the detector is:

$$\Delta L = \frac{4 \pi R^2 \omega}{c} = \left(\frac{4 \pi A}{c} \right) \omega$$

$$A = \text{area} = \pi R^2$$

This corresponds to a time difference:

$$\Delta t = \frac{4 \pi A \omega}{c} \quad \text{or a phase difference} \quad \Delta \phi = \left(\frac{8 \pi A}{\lambda c} \right) \omega$$

If you put in reasonable numbers you get measurable phase shifts.

The phase shift formula holds for any shape closed area A. The Michelson–Morley experiment could not detect, but did not rule out, any area.

If an optical fiber with refractive index (n) is used:

$$\Delta t = \left(\frac{4 A \omega}{c^2} \right) n^2$$

However, in this case there will also be the Fresnel drag coefficient, which goes the other way:

$$\Delta t_f = \left(\frac{4 A \omega}{c^2} \right) (n^2 - 1)$$

So the net time difference is:

$$\Delta t_{net} = \left(\frac{4 A \omega}{c^2} \right) \omega$$

the same as for air. So the index of refraction plays no role in the Sagnac effect.

Now let me provide a summary of special relativity,
\[x' = \gamma (x - \beta ct) \quad y = \frac{1}{\sqrt{1 - \beta^2}} \quad \beta = \frac{v}{c} \]
\[ct' = \gamma (ct - \beta x) \]

Inverse transformation: all we do is change \(\beta \to -\beta \)
\[x = \gamma (x' + \beta ct') \quad c^2 t'^2 - x'^2 = c^2 t^2 - x^2 \]
\[y' = y \]
\[c t = \gamma (ct' + \beta x') \]

Velocity addition:
\[\left(\frac{1}{c} \right) u_x' = \left(\frac{u_x}{c} \right) - \beta \]
\[1 - \left(\frac{\beta u_x}{c} \right) \]

For two velocities \(\beta_1 \) and \(\beta_2 \):
\[0 \xrightarrow{\beta_1} \frac{0}{\beta_2} \]
\[\beta = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2} \]

Remember, while \(y' = y \), \(u_y' \neq u_y \) because \(t' \neq t \):
\[\left(\frac{u_y'}{c} \right) = \left(\frac{u_y}{c} \right) \quad \text{Note: } u_x \text{, not } u_y \text{, appears in denominator} \]

Time dilation - when clocks start at the same origin:
\[ct' = \gamma (ct - \beta x) \quad \text{When } x = 0: \ ct' = \gamma ct \]

or a time interval is: \(c dt' = \gamma c dt \)
\[\Rightarrow \text{O' says O clocks run slower. But, } ct = \gamma ct' \text{, too, so O says O' clock runs slower. The moving clock runs slower.} \]

Example: Muons in cosmic rays. The muon is unstable:
\[\mu^+ \to e^+ + \nu_e + \bar{\nu}_e \]
\[-16- \]
Which in its rest frame has a lifetime \(\tau_y = 2.2 \times 10^{-6} \) sec.

For muons at rest: \(N(t) = \text{number of muons left after time } t \)
\[= N_0 e^{-t/\tau_y} \]
 exponential decay.

Cosmic ray protons produce muons in the upper atmosphere about 20 km up. A high energy muon travels at almost the speed of light:
\[c \tau_y = 660 \text{ meters}. \]

If there was no relativistic time dilation, only:
\[e^{-20\times 660} \approx e^{-30} \approx 0 \] no muons would survive to reach the Earth's surface. However, muons do reach the surface. The correct decay length is:
\[\gamma c \tau_y \]

We will soon learn that \(\gamma = \frac{E}{m c^2} \), where \(m = \text{rest mass of muon} \)
\[m c^2 = 106 \times 10^6 \text{ eV} = 106 \text{ MeV} \] and \(E \) is the total energy of the muon, typically \(10^{10} \text{ eV} = 10 \text{ GeV} \).

\[\Rightarrow \gamma \approx 100 \Rightarrow \text{Muon decay length } x = \gamma c \tau_y \approx 66 \text{ km} \]