Lec 35: Multiple source interference + circular aperture diffraction + single-slit diff.

last time: 2-source interference + phase shifter

today: multiple source interference + circular aperture diffraction + single-slit diff.
An array of sources

A_1 = A_2 = \ldots = A_N = A \quad \text{for the "amplitudes"}
\phi_1 = \phi_2 = \ldots = \phi_N = 0 \quad \text{for the phases}

r_1 \approx r_2 \approx \ldots \approx r_N \approx \bar{R}

\hat{E} \approx \frac{2}{\bar{R}} \left[\frac{A}{\bar{R}} \cos(\omega t - kr_1) + \frac{A}{\bar{R}} \cos(\omega t - kr_2) + \ldots + \frac{A}{\bar{R}} \cos(\omega t - kr_N) \right]

= \frac{2}{\bar{R}} \frac{A}{\bar{R}} \text{Re} \left[e^{i(\omega t - kr_1)} + e^{i(\omega t - kr_2)} + \ldots + e^{i(\omega t - kr_N)} \right]

= \frac{2}{\bar{R}} \frac{A}{\bar{R}} \text{Re} \left[e^{i(\omega t - kr_1)} \left(1 + e^{-ik(r_2 - r_1)} + e^{-ik(r_3 - r_1)} + \ldots + e^{-ik(r_N - r_1)} \right) \right]

r_2 - r_1 \approx d \sin \psi \quad r_3 - r_1 = r_3 - r_2 + r_2 - r_1 \approx 2d \sin \psi \quad r_N - r_1 = (N-1)d \sin \psi

Let \quad \delta \equiv k d \sin \psi

\hat{E} = \frac{2}{\bar{R}} \frac{A}{\bar{R}} \text{Re} \left[e^{i(\omega t - kr_1)} \left(1 + e^{-i\delta} + e^{-2i\delta} + \ldots + e^{-(N-1)i\delta} \right) \right]

= \frac{2}{\bar{R}} \frac{A}{\bar{R}} \text{Re} \left[e^{i(\omega t - kr_1)} \frac{1 - e^{-iN\delta}}{1 - e^{-i\delta}} \right]
As you will show in your HW, this yields for the intensity,

\[I = \frac{E_0 c A^2}{2 R^2} \left[\frac{\sin \left(\frac{N \theta}{2} \right)}{\sin \left(\frac{\theta}{2} \right)} \right]^2 \]

Since a single source radiation yields \(I_0 = \frac{E_0 c A^2}{2 R^2} \),

\[I = I_0 \left[\frac{\sin \left(\frac{N \theta}{2} \right)}{\sin \left(\frac{\theta}{2} \right)} \right]^2 \]

As you will show in your HW,

\[\lim_{N \to \infty} \left[\frac{\sin \left(\frac{N \theta}{2} \right)}{\sin \left(\frac{\theta}{2} \right)} \right]^2 = N^2 \quad \text{for } N \in \mathbb{Z} \]

e.g.

\[N = 10 \]

Q: How many \(\delta \) values correspond to values of zero intensity?
With large N, one can pinpoint a region of sky with great accuracy.

Full width: $\frac{N\delta^+}{2} = \pi, \quad \frac{N\delta^-}{2} = -\pi$

\[
\delta^+ - \delta^- = \frac{4\pi}{N} = k d (\sin \psi_+ - \sin \psi_-)
\]

\[
\approx k d (\psi_+ - \psi_-) = k d \Delta \psi
\]

\[
\Delta \psi \approx \frac{4\pi}{N} \frac{1}{kd} = \frac{2\lambda}{Nd}
\]

Diffraction

Diffraction \approx interference due to the screen "sources" cancelling the incident radiation.

Rigorously, one needs to solve Maxwell's equations subject to absorptive boundary conditions on the screen.

Just as our approximation of 2-slits being composed of two radiating current elements in phase, one can approximate diffraction as due to superposition of "effective" radiating point sources "composing" the aperture only.
electric field strength

\[E \approx \text{Re} \left\{ \sum_n A_n \frac{e^{i(kr - kr)}}{r_n} \right\} \]

- How polarization enters the sum is left ambiguous
- Radiation far away from the aperture is implicit
- How \(A_n \) relates to the incident plane wave amplitude requires an analysis starting from Maxwell equations that is beyond the scope of this course

\[E = \text{Re} \left\{ \frac{i k}{2 \pi} \int_{\text{aperture}} \tilde{A} \frac{e^{i(kr - kr)}}{r} \right\} \]

where \(E_{\text{incident}} = \text{Re} \{ \tilde{A} e^{i(kr - kr)} \} \)

- Sufficient for relative amplitude analysis far away (i.e. far \(\equiv r \gg \Theta(10\lambda) \))
- For plane-waves incident at an angle \(\perp \) to the aperture \(\tilde{A} \) is \((x,y)\) independent

Note dimensions:

- \(\tilde{A} (\neq \tilde{A}_n) \) here has units of electric field
- \([k] = [\text{length}]^{-1} \) & \([\frac{1}{r}] = [\text{length}]^{-1} \) cancel \([dxdy] = [\text{length}]^{-2} \)
example Diffraction by a circular aperture

Let a plane wave \(E = \text{Re} \{ \tilde{A} e^{i(\omega t - kr)} \} \) be incident normally on a circular aperture. What is the intensity at point \(P \) on the \(z \)-axis far from the aperture?

\[
E = \text{Re} \left\{ \frac{i k}{2\pi} \int_{\text{aperture}} dx \, dy \, \tilde{A} \, \frac{e^{i(\omega t - kr)}}{r} \right\}
\]

where \(r = \sqrt{x^2 + y^2 + z^2} \)

\[
= \text{Re} \left\{ \frac{i k}{2\pi} \tilde{A} \int_0^{2\pi} d\theta \int_0^a dp \, p \, e^{i(\omega t - kr)} \frac{1}{\sqrt{p^2 + z^2}} \right\}
\]

With \(z \)-fixed,

\[
p^2 + z^2 = r^2 \Rightarrow \quad 2p \, dp = 2\rho \, d\rho
\]

\[
E = \text{Re} \left\{ \frac{i k}{2\pi} \tilde{A} e^{i\omega t} \int_0^{a^2+z^2} dr \, e^{-i kr} \right\}
\]
As you will show in HW,

\[
I = 2 \varepsilon_0 c A^2 \sin^2 \left(\frac{k a^2}{4 \varepsilon} \right)
\]

\[
\sqrt{a^2 + z^2} = z \sqrt{1 + \left(\frac{a^2}{z^2} \right)^2} = z \left(1 + \frac{1}{2} \left(\frac{a^2}{z^2} \right)^2 + \cdots \right)
\]

\[
= z + \frac{1}{2} \frac{a^2}{z^2}
\]

Maximum with largest \(z \) is \(a/\lambda \)

\[
\frac{k a^2}{4 \varepsilon} = \frac{\lambda}{2} \Rightarrow \frac{4 \varepsilon}{k} \frac{a^2}{\lambda^2} = \frac{1}{z} \Rightarrow z = \frac{D^2}{\lambda^2} \quad D = 2a.
\]

e.g. \(a = 1 \) \(\text{mm} \) \(\lambda = 5000 \) \(\text{Å} \)

\[
\frac{I}{2 \varepsilon_0 c A^2}
\]

Fresnel region is complicated

Fraunhofer \(z \approx \frac{2D^2}{\lambda} \)

Fresnel region is simple
Single-slit diffraction using \(N \)-source interference in the limit \(N \to \infty \)

\[
I = I_0 \frac{\sin^2 \left(\frac{Nkd}{2} \sin \Psi \right)}{\sin^2 \left(\frac{kd}{2} \sin \Psi \right)}
\]

Since \(D = N d \),

\[
I = I_0 \frac{\sin^2 \left(\frac{Dd}{2} \sin \Psi \right)}{\sin^2 \left(\frac{kd}{2} N \sin \Psi \right)}
\]

Take \(N \to \infty \) keeping \(D \) fixed; since \(\sin \left(\frac{\beta}{N} \right) \to \frac{\beta}{N} \) as \(N \to \infty \)

\[
I \approx I_0 N^2 \frac{\sin^2 \beta}{\beta^2} \text{ where } \beta = \frac{Dk}{2} \sin \Psi
\]

Let \(I_{\Psi = 0} \equiv I_0 N^2 \) corresponding to \(\Psi = 0 \) intensity

\[
I = I_{\Psi = 0} \frac{\sin^2 \beta(\Psi)}{\beta^2(\Psi)}
\]