Topics: Faraday's law of electromagnetic induction (Parcell Ch 7)

Up to this point → we've focused on static electromagnetic fields
now we begin the study of electrodynamics

which began with the discovery of Faraday of electromagnetic induction in 1830s

his query: given that presence of charges leads to rearrangement of charges on nearby conductors, does an electric current induce a current in another conductor?

Experimentally, he found:

- Such currents were induced, but only by a changing current
- Induced current acts to oppose the change of the original current

induced current → induced emf in circuit

(emf: work done/charge \(\frac{1}{q} \oint \mathbf{E} \cdot d\mathbf{s} \) around the closed loop of circuit)
Consider a loop moving through a \(\vec{B} \) field:

- If \(\vec{B} \) uniform \(\rightarrow \)
 - Charges in wire experience upward force \(q \vec{v} \times \vec{B} \)
 - So two opposite ends acquire charge

Evaluate line integral of force \(\int \vec{F} \cdot d\vec{s} \) around loop:

- Only two ends contribute since \(\vec{F} \) is parallel to \(d\vec{s} \) \(\rightarrow \) result in equal+opposite contributions

\[\int \vec{F} \cdot d\vec{s} = 0 \]

If \(\vec{B} \) nonuniform \(\rightarrow \) two ends now do not cancel:

\[\int \vec{F} \cdot d\vec{s} = q \vec{v} (B_1 - B_2) \omega \]

\[\Rightarrow \text{EMF} \quad \mathcal{E} = \frac{1}{q} \int \vec{F} \cdot d\vec{s} = \vec{v} (B_1 - B_2) \omega \]

Induced current \(I = \frac{\mathcal{E}}{R} \)
Relate emf \mathcal{E} to magnetic flux $\Phi_m = \int \mathbf{B} \cdot d\mathbf{a}$

In this example $d\Phi_m = -(B_1 - B_2) \omega \, v \, dt$

\[
\mathcal{E} = -\frac{d\Phi_m}{dt} = -\frac{d}{dt} \int \mathbf{B} \cdot d\mathbf{a}
\]

\[\text{Lenz's Law (\Theta sign, physically very important)}
\]
\[\text{acts to oppose the change in flux}\]

Faraday:
\[\nabla \text{uniform } \mathbf{B} \rightarrow \mathcal{E}\]

\[\text{pull loop, get } I_{\text{ind}} \text{ (clockwise)}\]

\[\nabla \text{ pull magnet, not loop, now no } \mathcal{E} \times \mathbf{B}, \text{ but still identical } I_{\text{ind}}\]

\[\text{decrease strength of } \mathbf{B}. \text{ Also no } \mathcal{E} \times \mathbf{B}, \text{ but still get induced current } I\]
all are encoded by \[E = -\frac{d}{dt} \int B \cdot d\mathbf{a} \]

Note that since \[E = \frac{1}{2} \oint \mathbf{E} \cdot d\mathbf{s} = \oint \mathbf{E} \cdot d\mathbf{s} = \oint \mathbf{E}_{nc} \cdot d\mathbf{s} \]

(source of non-conservative \(\mathbf{E} \) field!
(not static field, for which \(\oint \mathbf{E} \cdot d\mathbf{s} = 0 \))

Example:

Consider \(\mathcal{O} \mathbf{B} \) (coil)

- Increase \(\mathbf{B} \) \(\rightarrow \) \(\text{Ind} \) \(\rightarrow \) (opposes change in \(\mathbf{B} \))

Circulating \(\mathbf{E} \) field \(\mathbf{E}_{nc} \) set up in all space where there is a changing flux of \(\mathbf{B} \).

- Induced \(\mathbf{E} \) field in clockwise direction

Note: never could get this \(\mathbf{E} \) from static charges

\(\text{Ind} \) \(\rightarrow \) \(\text{Ind} \) \(\rightarrow \) (signs: R.H. rule)

Circulation of \(\mathbf{E} \) + direction of \(d\mathbf{a} \)
Signs also understood by Lenz's law: induced emf is in a direction to oppose the change that produces it.

In our loop example:

- Increase \vec{B} → \vec{E}_{ind} (Find)
- Decrease \vec{B} → \vec{E}_{ind} (Find)

Back to

$$\oint \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{a}$$

$$\Rightarrow \int \nabla \times \vec{E} \cdot d\vec{a} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{a}$$

$$\Rightarrow \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Differential Statement of Faraday's Law

Changing \vec{B} field with time → source of \vec{E} field.
Examples: categories by ways to change flux:

- change \vec{B}
- change magnitude of area \vec{A}
- change direction of \vec{A}

"Motional emf"

Motional emf examples:

1. Rotating coil in uniform \vec{B} field, angular velocity ω, area A, N turns

$$\Phi_m = NBA \sin(\omega t + \alpha)$$

$$\Rightarrow E = -\frac{d\Phi_m}{dt} = -NBA \omega \cos(\omega t + \alpha)$$

2. Sliding bar in uniform \vec{B} field:

$$\vec{E}_m = \vec{B} \cdot \vec{A} = BW \vec{x}$$

$$\Rightarrow E = -\frac{d\Phi_m}{dt} = -BWv$$

$$I_{ind} = \frac{E}{R} = \frac{BWv}{R}$$

Force $\vec{F} = I\vec{I} \times \vec{B}$

$$|\vec{F}| = IwB = \frac{B^2 w^2 v}{R}$$

direction: opposite motion

$\vec{v} \times \vec{B}$ force
Charging B example:

Long solenoid, N turns/length, current $I(t)$, circular cross section, radius b

\[
E = -\frac{d}{dt} \int \mathbf{B} \cdot d\mathbf{a} = -\frac{d}{dt} \left(\mu_0 n I \pi b^2 \right) = -\mu_0 n \left(\frac{dI}{dt} \right) \pi b^2
\]

This is just our coil example from earlier.

\[\begin{array}{c}
\text{increasing } I(t) \rightarrow \text{Ind} \Rightarrow \text{Circ } \mathbf{B} \text{ Ind} \\
\text{decreasing } I(t) \rightarrow \text{Ind} \Rightarrow \text{Circ } \mathbf{B} \text{ Ind}
\end{array}\]