Lec 15: Intro to Semiconductor circuits

Last time: more practice w/ linear circuits

Today:
- Power dissipated in resistor
- Semiconductors and nonlinear circuit intro

Diode
Power dissipated in a resistor

Resistance $\Delta t = \text{time between collisions}$

\Rightarrow collisions transfer energy from charge to lattice

\Rightarrow potential energy of charge drops in resistor

\Rightarrow voltage drop as current moves through resistor

Since energy is conserved, we can compute the energy being dissipated.

\[\Delta (\text{potential energy}) = -(\Delta E_{\text{diss}}) \]

\[\Delta (\text{potential energy}) = -(\text{charge})(\text{potential drop per charge}) \]

\[= - (I \Delta t)(IR) \]

\[\therefore \frac{\Delta E_{\text{diss}}}{\Delta t} = \text{Power dissipated} \equiv P = I^2R \]
conductors: Previously, talked about classical intuition. Here, contrast info to semiconductors
copper

- charge carriers are \(e^-\)
- electrons behave as fluid "waves" seeing many lattice ions together.
- these electrons are delocalized: not bound to any particular lattice ion
- there are many momentum states accessible ("free fluid w/ unobstructed movement")
- more understanding after quantum, stat mech, and solid state
Semi conductor:
e.g. SI (Atomic # 14)

covalent bonds that have localized electron sharing

At room temperature, it is a poor conductor

Add impurities to have delocalized charge carriers (about 1 part in 10^6):

- Add phosphorous \rightarrow loosely bound e^- \rightarrow donates delocalized e^-
 $= n$-type semiconductor

- Add aluminum \rightarrow sucks in e^- \rightarrow donates holes (absence of delocalized e^-)
 $= p$-type semiconductor
Effective "positive charge" (≡ hole) is "cancelling" the Al bond w/the silicon (another way to say Al is not bonding w/the silicon).

At room temperature, this hole can gain enough energy to propagate like a conduction charge.

Consider P-N junction:

\[\text{P} \quad \text{N} \]

If \(\vec{E} \) field is from \(n \) to \(p \) direction,

\[\text{P} \quad \text{N} \]

\[\Rightarrow \] No current can flow across the junction.
If \vec{E} field is from p to n direction,

![Diagram](image)

The donor electron can fill the hole and current can flow freely.

![Diagram](image)

$I \approx I_s \left(e^{\frac{g V_D}{kT}} - 1 \right)$

$\frac{bT}{g} \approx 25 \times 10^{-3} V$

g and I_s are device dependent

Example of a nonlinear circuit element
Often idealizations are made to simplify design process:

e.g. To account for turn-on at $V = 0.6\, V$,

$$
\begin{align*}
&\text{A} & \text{B} \\
&\approx & \\
& I & 0.6
\end{align*}$$
General procedure for diode circuits

1) Draw a subcircuit for each possible state of the diodes. For \(n \) diodes there are \(2^n \) configurations.

2) Analyze each resulting circuit to find an expression for the desired output variable.

3) Find the validity range of each case

Example

\[
E = 5 \text{ V}
\]

\[
\begin{align*}
V_A & \quad \text{with} \\
V_B & \\
V_c & \quad \text{with} \\
\end{align*}
\]

Show that this is an AND gate if

<table>
<thead>
<tr>
<th>State</th>
<th>(V_A)</th>
<th>(V_B)</th>
<th>(V_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1)</td>
<td>5V</td>
<td>5V</td>
<td>5V</td>
</tr>
</tbody>
</table>
1. \(V_c = 5\, V \quad V_A = V_B = 5\, V \quad 1 \& 1 = 1 \)

2. \(V_c = 0 \quad V_A = 0 \quad 0 \& 1 = 0 \)

3. \(V_c = 0 \quad V_A = 5\, V \quad 1 \& 0 = 0 \)

4. \(V_c = 0 \quad V_A = 0 = V_B \quad 0 \& 0 = 0 \)