Physics 207 Spring 2012 Practice Test 3

1. 2.0 g of helium ($m=\frac{4}{4}$) at initial temperature 100°C and initial pressure 1.0 atm undergoes an isobaric expansion until the volume has doubled.

(a) Calculate the final temperature T_f.

(b) Calculate the work done on the gas, W.

(c) Calculate the heat input to the gas, Q.

(d) Calculate the change of thermal energy ΔE_{th}.
Physics 207 Spring 2012 Practice Test 3

2. A container contains a gas of molecular mass m at pressure p and temperature T.

(a) Determine the rate of collisions R of molecules against a wall of area A. Use the rms speed as the typical molecular speed.

(b) By what factor does the rate R change when you heat the gas to temperature $2T$?
3. A heat engine uses a three-process cycle consisting of (1) adiabatic compression, (2) isothermal expansion and (3) isochoric cooling of a monatomic ideal gas.

(a) Draw the cycle on a \(p-V \) diagram, labeling processes 1, 2 and 3 and using arrows to indicate the direction of the cycle.

(b) Derive the engine's efficiency in terms of the temperatures \(T_c \) and \(T_h \) and the volume compression ratio \(r = \frac{V_{\text{max}}}{V_{\text{min}}} \). Evaluate your expression for \(T_c = 300 \text{K}, \quad T_h = 1000 \text{K} \) and \(r = 5 \).
4. You are riding your bike toward an ice cream truck which is heading toward you, playing “Pop Goes the Weasel” on its loudspeaker. Your speed is \(v_{\text{bike}} \) and the truck's speed is \(v_{\text{truck}} \). The tune as heard by the truck driver is in a key characterized by frequency \(f_0 \). Use \(\nu \) for the speed of sound.

(a) Determine the frequency \(f_{\text{toward}} \) heard by you on the bike as you ride toward the truck.

(b) Determine the frequency \(f_{\text{away}} \) heard by you as you ride away after passing the truck.

(c) Determine the relative pitch shift that you hear, \(f_{\text{toward}} / f_{\text{away}} \) for the case in which you are riding at 8 m/s and the truck is moving at 7 m/s. Assume \(\nu = 340 \text{ m/s} \).
5. A microwave source can produce microwaves in the range 10-20 GHz. The waves are aimed through a small hole into a cavity consisting of a 12-cm-long cylinder with reflective ends.

(a) Determine the frequencies that will create standing waves in the cavity.

(b) For which of the above frequencies is the cavity midpoint an anti-node?