Physics 207 Spring 2012 Practice Test 1

1. A fairly good model of a sprinter is that he accelerates out of the blocks with constant acceleration a, for time t_a, then finishes the race at constant speed. The total race is over a distance d.

a) Draw graphs of $x(t)$ and $v(t)$ for such a sprinter.

b) Derive an equation relating the total race time t_f to the acceleration time t_a, acceleration a and length of the race, d.

c) Usain Bolt holds the world record 100-m sprint time of 9.58 s. Assuming that Bolt accelerated for the first 5.00 seconds, calculate his acceleration a.
2. A ball is kicked horizontally at the top of a hemispherical hill of radius R.

a) Find the minimum initial speed v_0 such that the ball never touches the sphere.

b) Find the minimum distance x between the edge of the sphere and the point where the ball lands.
3. A simplified version of the Cavendish experiment is shown at right. A small mass m hangs from a massless string of length l and is attracted to a large, stationary mass M by the force of gravity. The small mass is a distance d from the large mass and the (very small) angle of deflection is θ.

(a) Draw an expanded view of the small mass, exaggerating the angle θ, and label the forces on it. (In other words, draw a free body diagram for m.)

(b) Derive an equation relating the gravitational constant G to the given quantities and g. Feel free to use the small-angle approximation $\sin \theta \approx \theta$.

(c) In order to make the largest, and therefore most measurable deflection θ, should M be large or small? Should d be large or small? Explain why.

(d) In the actual Cavendish experiment (which used a sensitive torsion spring, not this setup), $d = 0.4$ m, $M = 158$ kg, and $m = 0.73$ kg. Calculate the resulting deflection θ. Do you think this angle was measurable in 1797?
4. In the previous problem, we solved for the gravitational constant G. But, as you know, Cavendish was more interested in the average density of the earth, ρ than he was interested in G itself. If he were using the simple system from problem 3, he'd have the following formula for his desired quantity in terms of the measured quantities, where θ is measured in radians and R is the radius of the earth.

$$\rho = \frac{M}{\frac{4}{3} \pi R d^2 \theta}$$

(a) Being a good experimentalist, Cavendish is required to estimate the error on his measurement of the average density of earth. Derive the formula for the relative error in ρ, $\frac{\Delta \rho}{\rho}$, in terms of the relative error on all the other quantities.

(b) Make some reasonable guesses for the relative error on all the measured quantities M, R, d and θ, and calculate the resulting estimated relative error on ρ.

(c) Cavendish himself reported a result of 5.448 ± 0.033 times the density of water. How does his relative error compare to your estimate? Do you think Cavendish could have measured ρ this accurately using the setup of problem 3?
5. A small block of mass m_1 lies on an inclined plane of mass m_2 which can slide without friction on the table. The static and kinetic friction coefficients between m_1 and m_2 are μ_s and μ_k. A rope and frictionless pulley connect m_2 to a weight of mass m_3.

(a) Draw and label the forces acting on m_1.

(b) For the case where $m_3=0$, calculate the minimum value of μ_s such that m_1 does not slide.

(b) Now calculate the minimum value of μ_s such that m_1 does not slide in the case when $m_3 \neq 0$.