1) At the Earth we have 1.36 kW/m². We can find the total power radiated by the sun by imagining a sphere of radius equal to the Earth-Sun separation: \(P = (1.36 \text{ kW/m}^2) \cdot 4\pi R_e^2 \). Then the power per unit area at the Sun's surface is \(P/4\pi R_s^2 \Rightarrow \)

\[
\text{power per unit area} = (1.36 \text{ kW/m}^2) \frac{(1.5 \times 10^8 \text{ m})^2}{(6.96 \times 10^8 \text{ m})^2} = 6.32 \times 10^7 \text{ W/m}^2 = \sigma T^4
\]

\[
T = \left(\frac{6.32 \times 10^7 \text{ W/m}^2}{\sigma} \right)^{\frac{1}{4}} = \left(\frac{6.32 \times 10^7 \text{ W/m}^2}{5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4} \right)^{\frac{1}{4}}
\]

\[
T = 5777 \text{ K}
\]

From the Wien displacement law (p.9)

\[
\lambda_{\text{max}} = 2899 \times 10^{-6} \text{ m.K}/T = 502 \text{ nm}
\]

(b) The total power (from above) is

\[
P = (1.36 \times 10^3 \text{ W/m}^2) \cdot 4\pi (1.5 \times 10^8 \text{ m})^2 = 3.85 \times 10^{26} \text{ W}
\]

2) For circular orbits \(|\omega| = \frac{v^2}{r} \) so we have

\[
m \frac{v^2}{r} = kr
\]

According to Bohr, the angular momentum is quantized:

\[
L = mrv = nh \Rightarrow v = \frac{nh}{mr}
\]

Substitute into (1)

\[
m \left(\frac{nh}{mr} \right)^2 = kr^2
\]

\[
\frac{n^2h^2}{kmr^4} = kr
\]

\[
r^2 = \frac{nh}{\sqrt{km}}
\]

The total energy is
\[E = \frac{1}{2}mv^2 + \frac{1}{2}kr^2 \]

From (i) \(mv^2 = kr^2 \) so \(E = \frac{1}{2}kr^2 + \frac{1}{2}kr^2 = kr^2 \)

\[E = k \frac{n^2}{\sqrt{2m}} = \frac{n^2}{\sqrt{2m}} \]

3) (a) We have energies \(E = -\frac{mc^2}{\alpha^2} \frac{1}{n^2} = -13.6\text{eV}/n^2 \). So the first \(\Delta E \) is \(13.6\text{eV}/1 - 13.6\text{eV}/4 = 10.2\text{eV} \) giving \(\frac{\Delta E}{E_1} = 0.75 \)

(b) i) I'm assuming the pendulum is released from rest at 60°. Then it's energy is \(E = mgh = mgl(1-\cos 60°) \)

\[= (0.005\text{kg})(9.8\text{m/s}^2)(2\text{m})(0.5) \]

\[= 4.9 \times 10^{-2} \text{J} \]

ii) For small oscillations the frequency is \(f = \frac{1}{2\pi} \sqrt{\frac{g}{l}} = 0.352 \text{rad/s}. \) The motion of the pendulum is sinusoidal - just like a mass on a spring - and the quantization rule is the same. \(E = nhf \)

so \(\Delta E = hf = (6.626 \times 10^{-34} \text{J}\cdot\text{s})(0.352 \text{rad/s}) = 2.33 \times 10^{-34} \)

giving \(\frac{\Delta E}{E_1} = 4.76 \times 10^{-33} \)

(c) In (b) the spacing between states is very small compared to \(E \), so the energy quantization is not important. In the hydrogen atom it is very important.
4) According to the Bohr model, the orbits have radius \(r = \frac{4\pi^2 e^2}{\varepsilon_0^2 m n^2} \) and velocity \(v = \left(\frac{e^2}{4\pi^2 \varepsilon_0 \hbar} \right)^{\frac{1}{2}} n \) so the orbit frequency is
\[
f = \frac{v}{\text{orbit circumference}} = \frac{2\pi r}{\text{orbit circumference}} = \left(\frac{\hbar}{2\pi} \right) \left(\frac{e^2}{4\pi^2 \varepsilon_0} \right)^{\frac{1}{2}} \frac{m}{\hbar^3} \frac{1}{n^3}
\]
For a quantum jump from state \(n+1 \) to state \(n \) the radiation frequency would be
\[
\nu = E_{n+1} - E_n
\]
\Rightarrow
\[
\nu = \frac{1}{\hbar} \left[\left(\frac{e^2}{4\pi^2 \varepsilon_0} \frac{1}{2} \frac{m c^2}{n^2} \right) m c^2 \right] \left[\frac{1}{n^2} - \frac{1}{(n+1)^2} \right]
\]
For large \(n \)
\[
\frac{1}{(n+1)^2} = \frac{1}{n^2 (\frac{1}{n} + 1)^2} = \frac{1}{n^2}\left(1 + \frac{1}{n}\right)^{-2}
\]
\[
\approx \frac{1}{n^2} \left(1 - \frac{2}{n} + \ldots\right)
\]
So
\[
\nu = \frac{1}{2\pi \hbar} \left(\frac{e^2}{4\pi^2 \varepsilon_0} \right)^{\frac{1}{2}} \frac{m}{\hbar^2} \left[\frac{1}{n^2} - \left(\frac{1}{n} \right)^2 \left(1 - \frac{2}{n} + \ldots\right) \right]
\]
\[
\nu \approx \frac{1}{2\pi \hbar} \left(\frac{e^2}{4\pi^2 \varepsilon_0} \right)^{\frac{1}{2}} \frac{m}{\hbar^3} \frac{1}{n^3}
\] is same as \(f \).

5) We need to do \(\lambda = \frac{\hbar}{\nu} \). All the examples are non-relativistic so when the energy is given \(E = \frac{p^2}{2m} \Rightarrow p = \sqrt{2mE} \). I will use
\[
\lambda = \frac{hc}{pc} \quad \text{so I want} \quad pc = \sqrt{2E mc^2}
\]
(a) \[
pc = \sqrt{2(54eV)(5.11 \times 10^5 eV)} = 7430 eV \quad \lambda = \frac{1240 eV \text{ nm}}{7430 eV} = 0.167 \text{ nm}
\]
(b) \[
pc = \sqrt{2(70 MeV)(938 MeV)} = 362.4 \text{ MeV} \quad \lambda = 3.42 \times 10^{-6} \text{ nm} = 3.42 \text{ fm}
\]
(c) \[
p = m v = (0.1 \text{ kg})(1200 \text{ m/s}) = 120 \text{ kg \cdot m/s}
\]
\[
\lambda = \frac{\hbar}{p} = \frac{6.62 \times 10^{-34} \text{ J \cdot s}}{120 \text{ kg \cdot m/s}} = 5.5 \times 10^{-36} \text{ m}
\]
6) Postponed.

7) We have \(E^2 = (pc)^2 + (mc^2)^2 \). Substitute \(E = \hbar \omega \) and \(p = \hbar k \) and then solve for \(\omega \)

\[
(h \omega)^2 = [(hkc)^2 + (mc^2)^2]
\]

\[
\omega = \frac{1}{\hbar} \left[(hkc)^2 + (mc^2)^2 \right]^{\frac{1}{2}}
\]

\[
\frac{dw}{dk} = \frac{1}{\hbar} \left(\frac{1}{2} \right) \left[(hkc)^2 + (mc^2)^2 \right]^{-\frac{1}{2}} \sqrt{h^2 c^2 k}
\]

\[
= \frac{hkc^2}{\left[(hkc)^2 + (mc^2)^2 \right]^{\frac{1}{2}}} = \frac{pc^2}{\left[(pc)^2 + (mc^2)^2 \right]^{\frac{1}{2}}} = \frac{pc^2}{E}
\]

\[
\Rightarrow \quad \frac{dw}{dk} = \frac{8 \, mv \, c^2}{8 \, mc^2} = v
\]