Vertical Spring - Gravity just SHIFTS EQUIL.

\[-ky_2 = mg \]

\[F_{tot} = T_{sp} + T = -ky - mg \]

\[y = 0 \quad \text{eq. of gravity} \]

\[y' = y - y_g \]

\[F_{tot} = -k(y' + y_g) - mg \]

\[= -ky' - ky_g - mg \]

\[F_{tot} = -ky' \quad \text{spring w/ grav from new & ps.} \]

Ch 11 - WORK

Work keeps track of energy transfer from a force applied over a distance.

Remember impulse \(J = \int F \, dt = \text{momentum transfer} \)

\(\Rightarrow \) work is energy analog

\[\text{Signs:} \]

\[\text{Work done on mass } m \]

\(\frac{\text{is positive}}{F \text{ and } dx} \)

\(\text{in same direction} \)

\(F = \text{force on } m \)
General case: \(\vec{F} \parallel \vec{d}r \)

- \(\vec{F} \) doesn't change speed \(\frac{d}{dt} \)
- So doesn't change \(K \)
- \(F_{||} \) changes speed \(\vec{d}r \) changes \(K \)

(Note - centripetal case does zero work!)

\[
F_{||} = ma_{||} = m \frac{d\vec{v}}{dt} = m \frac{d\vec{v}}{ds} \frac{ds}{dt} = m \frac{d\vec{v}}{ds}
\]

\[
\Delta K_{12} = \frac{1}{2} m \vec{v}_2^2 - \frac{1}{2} m \vec{v}_1^2 = \int_{s_1}^{s_2} m \vec{v} \cdot d\vec{v} = \int_{s_1}^{s_2} F_{||} ds = W_{12}
\]

Vector Dot Product

\[
F_{||} ds = F \cos \alpha \ ds
\]

\[
= \vec{F} \cdot d\vec{r} = \vec{F} \cdot dr
\]

Note: work is a transfer, not a state quantity like \(K \) or \(U \), so no \(d \) *

Note: circular motion \(\vec{F} \perp \vec{d}r \Rightarrow \vec{F} \cdot d\vec{r} = 0 \)

Spring:

\[
W = \int_{x_1}^{x_2} (kx)^2 dx = \frac{1}{2} kx^2
\]

\[
W = \frac{1}{2} k(x_2^2 - x_1^2)
\]

\(x > 0 \) as spring pushes object from \(x_1 \) to \(x_2 \)
Conservative Forces depend on position

and have potential energy \(W \) independent of path!

\[
W = -\Delta U = \int_{F} F \cdot dr = -\left(U(F_{2}) - U(F_{1}) \right)
\]

In general, if \(\vec{F} \) is conservative, then

\[
\vec{F} = -\nabla U(x)
\]

\[
= -\frac{du}{dx} \mathbf{i} - \frac{du}{dy} \mathbf{j} - \frac{dv}{dz} \mathbf{k}
\]

\(\Rightarrow \) common to work with \(U(F) \) rather than \(\vec{F} \)

<table>
<thead>
<tr>
<th>Conservative</th>
<th>Non-Conservative</th>
</tr>
</thead>
<tbody>
<tr>
<td>gravity (-mg) (constant)</td>
<td>friction (f) depends on (V)</td>
</tr>
<tr>
<td>Spring (-kx)</td>
<td>(direction of motion)</td>
</tr>
<tr>
<td>Gravity (-G \frac{mM}{r^{2}})</td>
<td>air drag - depends on (V)</td>
</tr>
</tbody>
</table>

 conserve energy in

"lose" mechanical

motion + potential

energy into heat

= mech. energy

"dissipative" force
Power = rate of doing work
\[\frac{dw}{dt} = F \cdot dv \]

\[p = \frac{dw}{dt} = F \cdot \frac{dv}{dt} = F \cdot v \]
\[\frac{W}{s} = \frac{J}{s} \] (1 hp = 746 W)

Many other ways to calculate power, though

e.g. chairlift carries skiers up \(\frac{h}{300} \) m

rate = 1 chair / 5 s

chair = 2 people

eq avg. 150 kg w/gear

\[p = \frac{mgh}{\Delta t} = \frac{150 \times 9.8 \times \frac{300}{5}}{5} = 90 \text{ kW} \]

Note that \(\frac{h}{\Delta t} \) is “speed” of m up hill

Terminal speed of car, air drag = wheel power

\[F_d \delta = P _w \] (30% loss in drive train

30% loss in drive train
doesn’t matter)

\[\frac{1}{2} C_d A \frac{v^2}{\text{mph}} = 0.70 \text{ P_{eng}} \]

1 hp = 746 W = 0.75 kW

"scaling formula"

\[U_{\text{max}} = \left(\frac{2 \cdot 0.70 \text{ P_{eng}}}{\rho AC_d} \right)^{1/3} \]

\[U_{\text{max}} \approx 125 \text{ mph} \left(\frac{\text{P_{eng}}}{100 \text{ hp}} \right)^{1/3} = 56 \text{ m/s} = 125 \text{ mph} \]