Thermo Principles by Process: \(W = \text{work ON gas; } Q = \text{heat INTO gas} \)

ALWAYS TRUE

\[pV = NkT \quad \text{(Ideal Gas Law)} \]
\[W + Q = \Delta E_{th} \quad \text{(1st Law = Conservation of Energy)} \]
\[\Delta E_{th} = Nc_v \Delta T \quad \text{(because } W = 0 \text{ for constant-volume process)} \]

- monatomic gas: \(c_v = \frac{3}{2} k \)
- diatomic gas: \(c_v = \frac{5}{2} k \)
 (Equipartition Theorem)
- any ideal gas: \(c_p = c_v + k \)

ISOBARIC PROCESS

\[p = \text{constant; } T \div V = \text{constant} \]
\[W = -p \Delta V \]
\[Q = N c_p \Delta T \]
\[\Delta E_{th} = N c_v \Delta T \]

ISOThERMAL PROCESS

\[T = \text{constant; } pV = \text{constant} \]
\[\Delta E_{th} = 0 \]
\[Q = -W = NkT \ln \frac{V_f}{V_i} = pV \ln \frac{V_f}{V_i} \]

ISOCHORIC (constant-volume) PROCESS

\[V = \text{constant; } T \div P = \text{constant} \]
\[W = 0 \]
\[Q = \Delta E_{th} = N c_v \Delta T \]

ADIABATIC PROCESS

\[Q = 0 \]
\[W = \Delta E_{th} = N c_v \Delta T \]
\[pV^\gamma = \text{constant} \quad (\gamma = \frac{c_p}{c_v}) \]

ENGINES: reverse sign of \(W \) since we talk about work done BY gas. Sorry.