Today’s Topics

- Capacitance (Ch. 26.1-3)
 - Capacitors and Capacitance
 - Calculating Capacitance for parallel-plate, cylindrical, spherical capacitors.
 - Combinations of capacitors

- Hope you have previewed!
About Exam 1

- **When and where**
 - Monday Feb. 14th 5:30-7:00 pm
 - (room to be announced)

- **Format**
 - Closed book
 - One 8x11 formula sheet allowed, **must be self prepared**, no photo copying/download-printing of solutions, lecture slides, etc.
 - 20-25 multiple choice questions
 - Bring a calculator (but no computer). Only basic calculation functionality can be used.
 - Bring a B2 pencil for Scantron.

- **Special requests:**
 - Have to be approved. Deadline is 12pm tomorrow (Feb 4th.)
 - All specially arranged tests (e.g. those at alternative time) are held in our 202 labs. (for approved requests only)
Chapters Covered

- Chapter 23: Electric Fields
- Chapter 24: Gauss’s Law
- Chapter 25: Electric Potential
- Chapter 26: Capacitance

I will not post past/sample exams as none that I can find are representative. Often those can be misleading.

I will use next Thursday’s lecture to review for the test. (and will show a few sample test questions to help you get familiar with the test style)
Exercise: Parallel Plates

Find the potential difference between the two large conductor plates of area A and separation d

See board

Answer

$\Delta V = \frac{Qd}{\varepsilon_0 A}$

Note: ΔV is proportional to Q
Capacitors

- A generic capacitor:
 - Two conductors oppositely charged:
 - $\Delta V \propto Q$

- Capacitors are very useful devices:
 - Timing control, noise filters, energy buffer, frequency generator/selector/filter, sensors, memories...
Capacitance

- $\Delta V \propto Q \rightarrow Q = C \Delta V \rightarrow C$ is called capacitance
- $C = Q/\Delta V$: amount of charge per unit of potential diff.
 - Unit: Farad (F) = 1 Coulomb/Volt
 - Parallel-plate: $C = \varepsilon_0 A/d$
 - Cylindrical and Spherical: see examples in text

- **Cylindrical:**
 \[
 C = \frac{\ell}{2 k_e \ln \left(\frac{b}{a} \right)}
 \]

- **Spherical:**
 \[
 C = \frac{ab}{k_e (b - a)}
 \]
Demo: Charging A Pair of Parallel Conductors

Uncharged

Charging

$\Delta V = V_+ - V_-$
Charging A Capacitor

Uncharged

Charging

Charged

\[\Delta V = \frac{q}{C} \]

\[-dq \]

\[\Delta V = \frac{Q}{C} \]

Electric potential energy gained:

\[U = \int du = \int (-\Delta V)(-dq) = \int_0^Q \frac{q}{C} dq = \frac{1}{2} \frac{Q^2}{C} \]

After charging the capacitor stores potential energy:

\[U = \frac{1}{2} \frac{Q^2}{C} \]
Discharging A Capacitor

\[\Delta V = \frac{Q}{C} \]

\[\Delta V = \frac{q}{C} \]

\[du = \Delta V dq \]

Potential energy released:

\[U = \int dU = \int \Delta V (-dq) = \int_{Q}^{0} -\frac{q}{C} dq = \frac{1}{2} \frac{Q^2}{C} \]

the originally charged capacitor has potential energy:

\[U = \frac{1}{2} \frac{Q^2}{C} \]
Combinations of Capacitors In Series

Charge conservation: \(Q_1 = Q_2 = Q \)

\[C_1 \Delta V_1 = Q \]
\[C_2 \Delta V_2 = Q \]

Effective Capacitance
\[C = \frac{Q}{\Delta V} \Rightarrow \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \]

\(1/C_{\text{series}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \ldots \)

Note: \(C_{\text{series}} \) always < \(C_i \)
Combinations of Capacitors In Parallel

\[C_1 \Delta V_1 = Q_1 \]
\[C_2 \Delta V_2 = Q_2 \]

\[\Delta V_1 = \Delta V_2 = \Delta V \] (why?)

Effective Capacitance
\[C = \frac{Q}{\Delta V} \Rightarrow C = C_1 + C_2 \]

\[C_{\text{parallel}} = C_1 + C_2 + C_3 + \ldots \]
Note: \(C_{\text{parallel}} \) always > \(C_i \)
Quick Quiz/exercise: Combination of Capacitors

What is the effective capacitance for this combination? (C₁=1µF, C₂=2µF, C₃=3µF)

1. C=6µF
2. C=3µF
3. C=1.5µF
4. None of above