Physics 202, Lecture 25

Today’s Topics

- Image Formation
- Real Image, Virtual Image, and No Image
- Ray Diagram
- Images Formed by:
 - Flat Mirrors, Spherical Mirrors, Refraction, Thin Lenses
 - Camera, Eye, Simple Magnifier, Microscope, Telescope. (Thursday)

Review: Reflection and Refraction

- Law of reflection: \(\theta'_1 = \theta_1 \)
- Law of refraction:
 \[
 \frac{\sin \theta_1}{n_1} = \frac{\sin \theta_2}{n_2}
 \]
 \[
 I_{\text{in}} = I_{\text{reflection}} + I_{\text{refraction}} (\mp I_{\text{absorption}})
 \]
 Neglected unless indicated otherwise.

Note: Frequency (color) is unchanged in reflection and refraction.

Imaging

- Imaging: visible object → optical device → image

 - Optical device
 - Image lights
 - Object lights
 - Real object
 - Image

 Note: If image can be formed, only two rays per point are necessary.

 - No Image: No point to point correspondence
 - Image Aberration (fuzzy): Poorly focused imaged points

Image Properties

- Image properties to be concerned include
 - Location, real/virtual, reduced/enlarged, upright/inverted, similar/distorted, …

Real and Virtual Images

- Real Image:
 - Image lights actually pass through image

- Virtual Image:
 - Image lights appear to have come from the image

 Real images can be formed on a screen.
Image Formed by Plane Mirrors

- **Parameters**
 - d_o: object distance
 - d_i: image distance
 - h_o: object height
 - h_i: image height
 - M: magnification

- **Properties**:
 - Image is virtual and behind the mirror.
 - Object distance = image distance
 - Lateral magnification $M=1$
 - Image is upright (for upright object)
 - Image has front/back reversal.

\[d_o > 0, d_i < 0 \]
\[M = \frac{d_i}{d_o} = 1 \]

Focal Point and Focal Length

- **Focal point (F):** the point to which light beam parallel to principal axis converge.

- **Focal Length (f):** distance between focal point and the mirror or lens.

- **Notes**:
 - Each mirror has one focal point while each lens has two.
 - Focal points can be “virtual”
 - Lights emitted from focal point will become parallel after mirror (or lens)

Ray Diagrams

- If image can be formed, only two rays are necessary to determine an image point.
- Useful rays:
 - Object ray pointing to the center (C)
 - Image ray inline with the object ray
 - Object ray parallel to principal axis
 - Image ray “pointing to” a focal point (F)
 - Object ray passing through a focal point
 - Image ray parallel to principal axis.

Mirror Equation and Magnification

- **Parameters**
 - d_o: object distance
 - d_i: image distance
 - h_o: object height
 - h_i: image height
 - M: magnification
 - f: focal length

- **Equations**:
 \[\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \]
 \[d_i = \frac{fd_o}{d_o - f} \]

- **Magnification**
 \[M = \frac{h_i}{h_o} = \frac{d_i}{d_o} = \frac{f}{f - d_o} \]

- **Notes**:
 - If $|M|<1 \rightarrow$ Image < Object
 - If $|M|>1 \rightarrow$ Image > Object
 - If $M<0 \rightarrow$ Image ↓↓ Object
 - If $M>0 \rightarrow$ Image ↑↑ Object
Image Formed by Plane Mirrors

In View of Mirror Equation

Parameters:
- \(d_o \): object distance
- \(d_i \): image distance
- \(h_o \): object height
- \(h_i \): image height
- \(M \): magnification
- \(f \): focal length

Properties:
- Image is virtual and behind the mirror.
- Object distance = image distance
- Lateral magnification \(M = 1 \)
- Image is upright (for upright object)
- Image has front/back reversal.

\(f = \infty \Rightarrow d_i = -d_o \)
\(d_o > 0, d_i < 0 \)
\(M = -\frac{d_i}{d_o} = 1 \)

Quiz 1: Is there another convenient ray to use?
Quiz 2:
1. Real or virtual?
2. Upright or inverted?
3. Enlarged or reduced?

Answer: Virtual, upright (\(M > 0 \)), reduced (\(|M| < 1 \))

Image Formed by Convex Mirror

\(f = R/2 < 0 \)
\(\frac{1}{p} + \frac{1}{q} = \frac{1}{f} \)
\(q = \frac{np}{p-f} > 0 \)
\(0 < M = -\frac{d_i}{d_o} < 1 \)

Image Formed by Concave Mirrors

Object (O) in between F and Mirror:
virtual, upright, enlarged

Object in front of Mirror:
real, inverted. Enlarged or reduced, depending on \(p \).

Image Formed by Refraction

\(R = \infty \)
\(q^2 = p(n_2/n_1) \)
\(M = q/p \)
\(n_o/n_i < 1 \)

Example: looking at a fish
Closer, not-inverted, reduced, virtual…
Thin Lenses

- Lenses are refractive optical devices with two spherical sides.

$$f = \frac{1}{(n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)}$$

Lens maker’s equation

- F_1, F_2: Focal points
- $f = f_1 = f_2$: Focal length

- $f > 0$: converging
- $f < 0$: diverging

Images Formed by Converging Lens

- Object (O) is in front of F_1: real, inverted, enlarged or reduced

$$\frac{1}{p} - \frac{1}{q} = \frac{1}{f}$$

- Object (O) in between F_1 and lens: virtual, upright, enlarged.

Images Formed by Diverging Lenses

- Images are always virtual, upright, and reduced
Sign Conventions (Pan’s version)

<table>
<thead>
<tr>
<th></th>
<th>>0</th>
<th><0</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>concave mirrors</td>
<td>convex mirrors</td>
</tr>
<tr>
<td></td>
<td>converging lens</td>
<td>diverging lens</td>
</tr>
<tr>
<td>R</td>
<td>center at image side</td>
<td>center at other side</td>
</tr>
<tr>
<td>p</td>
<td>object side</td>
<td>the other side</td>
</tr>
<tr>
<td>q</td>
<td>image side (real)</td>
<td>the other side (virtual)</td>
</tr>
<tr>
<td>M=q/p</td>
<td>upright</td>
<td>inverted</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Object Side</th>
<th>Image Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>mirrors</td>
<td>front</td>
</tr>
<tr>
<td>lenses</td>
<td>front</td>
</tr>
<tr>
<td>refraction</td>
<td>opposite to observer's side</td>
</tr>
<tr>
<td>surface</td>
<td>observer's side</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Object Side</th>
<th>Image Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>front</td>
<td>front</td>
</tr>
<tr>
<td>front</td>
<td>behind</td>
</tr>
<tr>
<td>opposite to observer's side</td>
<td>observer's side</td>
</tr>
</tbody>
</table>