Today’s Topics

- AC Circuits with AC Source
- AC Power Source
- Resistors, Capacitors and Inductors in AC Circuit
- RLC Series in AC Circuit
- Impedance
- Resonances in Series RLC Circuit
- Power in AC Circuit
- Transformers

AC Power Source

\[\Delta V = \Delta v_{\text{max}} \sin(\omega t + \phi_0) = \Delta v_{\text{max}} \sin(\omega t) \]

Initial phase at \(t = 0 \)

(usually set \(\phi_0 = 0 \))

\(\omega = 2\pi f \)

\(T = \frac{2\pi}{\omega} \)

Recap

- A sinusoidal function \(x = A \sin \phi \) can be represented graphically as a phasor vector with length \(A \) and angle \(\phi \) (w.r.t. to horizontal)

Phasor

Resistors in an AC Circuit

\[\Delta V - R = 0 \text{ at any time} \]

\[i_R = \frac{\Delta V}{R} = I_{\text{max}} \sin \omega t \]

The current through an resistor is in phase with the voltage across it
Inductors in an AC Circuit

- \(\Delta V - L \frac{di}{dt} = 0 \)

- \(i_L = i_{max} \sin(\omega t - \pi/2) \)
- \(i_{max} = \frac{\Delta V_{max}}{\omega L} = \frac{\Delta V_{max}}{X_L} \)
- \(X_L = \omega L \rightarrow \text{inductive reactance} \)
- The current through an inductor is 90\(^\circ\) behind the voltage across it.

Capacitors in an AC Circuit

- \(\Delta V - \frac{q}{C} = 0, \frac{dq}{dt} = i \)

- \(i_C = i_{max} \sin(\omega t + \pi/2) \)
- \(i_{max} = \frac{\Delta V_{max}}{1/(\omega C)} = \frac{\Delta V_{max}}{X_C} \)
- \(X_C = 1/(\omega C) \rightarrow \text{capacitive reactance} \)
- The current through a capacitor is 90\(^\circ\) ahead of the voltage across it.

Summary of Phasor Relationship

- \(I_R \) and \(\Delta V_R \) in phase
- \(|i_R| = |\Delta V_R|/R \)
- \(I_L \) 90\(^\circ\) behind \(\Delta V_L \)
- \(|i_L| = |\Delta V_L|/X_L \)
- \(I_C \) 90\(^\circ\) ahead of \(\Delta V_C \)
- \(|i_C| = |\Delta V_C|/X_C \)

AC Circuit: Series RLC

- Find out current \(i \) and voltage difference \(\Delta V_R, \Delta V_L, \Delta V_C \).

Notes:
- Kirchhoff’s rules still apply!
- Phasor analysis is convenient.
AC Circuit: Series RLC

- Find out current i and voltage difference ΔV_R, ΔV_L, ΔV_C.

Things we know:
1. Current everywhere must be the same $i = I_{max} \sin(\omega t)$
2. ΔV_R has the same phase as current
3. ΔV_L leads the current by 90°
4. ΔV_C lags the current by 90°

$\Delta V_R = I_{max} R \sin(\omega t)$

$\Delta V_L = I_{max} X_L \sin(\omega t + \pi/2)$

$\Delta V_C = I_{max} X_C \sin(\omega t - \pi/2)$

Note: Phase relations on p.962 for $(\Delta v$ and $i)$ to $(\Delta V_R$, ΔV_L and $\Delta V_C)$ are wrong in the book.

Phasor Technique
- The phasor of Δv_{RLC} = vector sum of phasors for ΔV_R, ΔV_L, ΔV_C.

$\Delta V_{max} = \sqrt{\Delta V_R^2 + (\Delta V_L - \Delta V_C)^2}$

$= I_{max} \sqrt{R^2 + (X_L - X_C)^2}$

$\phi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right)$

note: $X_L = \omega L$, $X_C = \frac{1}{\omega C}$

$\Delta V = \Delta V_{max} \sin(\omega t + \phi)$

$i = I_{max} \sin(\omega t)$
Resonances In Series RLC Circuit

- The impedance of an AC circuit is a function of \(\omega \).
 - e.g Series RLC: \(Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{R^2 + \frac{1}{\omega C}} \)
- when \(\omega = \omega_0 = \frac{1}{\sqrt{LC}} \) (i.e. \(X_L = X_C \))
 - lowest impedance \(\Rightarrow \) largest current \(\Rightarrow \) resonance

For a general AC circuit, at resonance:
- Impedance is at lowest
- Phase angle is zero. (I is “in phase” with \(\Delta V \))
- \(I_{max} \) is at highest
- Power consumption is at highest

Demo: http://ngsir.netfirms.com/englishhtm/RLC.htm

Summary of Impedances and Phases

<table>
<thead>
<tr>
<th>Circuit Elements</th>
<th>Impedance (Z)</th>
<th>Phase Angle (\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>(R)</td>
<td>0°</td>
</tr>
<tr>
<td>(X_L)</td>
<td>(X_L)</td>
<td>90°</td>
</tr>
<tr>
<td>(X_C)</td>
<td>(-X_C)</td>
<td>-90°</td>
</tr>
<tr>
<td>(X_C)</td>
<td>(X_L)</td>
<td>90°</td>
</tr>
<tr>
<td>(R)</td>
<td>(R + \frac{1}{\omega L})</td>
<td>Negative, between (-90°) and (0°)</td>
</tr>
<tr>
<td>(X_L)</td>
<td>(\sqrt{R^2 + X_C^2})</td>
<td>Positive, between (0°) and (90°)</td>
</tr>
</tbody>
</table>
| \(X_C \) | \(\sqrt{R^2 + (X_L - X_C)^2} \) | Negative if \(X_C > X_L \)
 - Positive if \(X_C < X_L \) |

* In each case, an AC voltage (not current) is applied across the elements.

© 2004 Thomas - Brooks/Cole

Comparison Between Impedance and Resistance

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Resistance</th>
<th>Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>Z</td>
</tr>
<tr>
<td>Application</td>
<td>Circuits with only R</td>
<td>Circuits with R, L, C</td>
</tr>
<tr>
<td>Value Type</td>
<td>Real</td>
<td>Complex: (Z=</td>
</tr>
<tr>
<td>(\Delta V) Relationship</td>
<td>(\Delta V=IR)</td>
<td>(\Delta V=IZ, \Delta V_{max}=</td>
</tr>
<tr>
<td>In Series:</td>
<td>(R=R_1+R_2+R_3+\ldots)</td>
<td>(Z=Z_1+Z_2+Z_3+\ldots)</td>
</tr>
<tr>
<td>In Parallel:</td>
<td>(\frac{1}{Z}=\frac{1}{Z_1}+\frac{1}{Z_2}+\frac{1}{Z_3}+\ldots)</td>
<td>(I=I_1+I_2+I_3+\ldots)</td>
</tr>
</tbody>
</table>

Power in AC Circuit

- Power in a circuit: \(P(t) = i(t)\Delta V(t) \) true for any circuit, AC or DC
- In an AC circuit, current and voltage on any component can be written in general:
 - \(\Delta V(t) = \Delta V_{max} \sin(\omega t) \)
 - \(i(t) = I_{max} \sin(\omega t - \phi) \)

\[
P(t) = I_{max} \sin(\omega t - \phi) \times \Delta V_{max} \sin(\omega t) \\
= I_{max} \Delta V_{max} \sin(\omega t - \phi) \sin(\omega t) \\
P_{average} = \frac{1}{2} I_{max} \Delta V_{max} \sin(\omega t - \phi) \sin(\omega t) \quad \text{(see board)}
\]
Power in AC Circuit

For resistor: $\phi = 0$

$P_{\text{average}} = \frac{1}{2} I_{\text{max}} \cdot \Delta V_{\text{max}}$

For inductor: $\phi = \pi/2$

$P_{\text{average}} = \frac{1}{2} I_{\text{max}} \cdot \Delta V_{\text{max}} \cdot \cos(\pi/2) = 0$

For Capacitor: $\phi = -\pi/2$

$P_{\text{average}} = \frac{1}{2} I_{\text{max}} \cdot \Delta V_{\text{max}} \cdot \cos(\pi/2) = 0$

(Ideal inductors and capacitors NEVER consume energy!)

For a general AC circuit:

$P_{\text{ave}} = \frac{1}{2} I_{\text{max}} \cdot \Delta V_{\text{max}} \cdot \cos(\phi) = \frac{1}{2} I_{\text{max}}^2 R = \frac{1}{2} (\Delta V_{\text{max}})^2 / R$

$= I_{\text{rms}}^2 R = \Delta V_{\text{rms}}^2 / R$

- Commonly used format:

$I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}}$, $\Delta V_{\text{rms}} = \frac{\Delta V_{\text{max}}}{\sqrt{2}}$

Transformers

- Useful for converting AC voltages
 - Power distribution
 - Charger for cell phone, laptop, etc. etc...

Voltage across primary:

$\frac{V_p}{N_p} = \frac{d\Phi_p}{dt}$

Voltage across secondary:

$\frac{V_s}{N_s} = -\frac{d\Phi_s}{dt}$

Did you ever wonder...

- why/how the cell phone chargers have gotten so much lighter and smaller?

10 years ago

5 years ago

Now