Physics 202, Lecture 14

Today’s Topics

- Midterm 2 announcements
- Sources of the Magnetic Field (Ch 30)
 - Review: The Biot-Savart Law
 - The Ampere’s Law
 - Applications And Exercises of ampere’s Law
 - Straight line, Loop, Solenoid, Toroid
- Magnetism in Matter
About Midterm 2

- **When and where**
 - Monday March 21st 5:30-7:00 pm
 - Will be announced later

- **Format**
 - Closed book
 - One 8x11 formula sheet allowed, **must be self prepared, no photo copy of solutions, no photo copy of lecture slides, etc**
 - 20 – 25 questions
 - Bring a calculator (but no computer). Only basic calculation functionality can be used.
 - B2 pencil for Scantron

- **Special Arrangements:**
 - All alternative time tests must be preapproved. **Deadline: 6 PM Monday (March 7).**
 - All specially arranged tests (e.g. those at alternative time) are held in our 202 lab rooms (**for approved requests only**).
Midterm 2: Chapters Covered

- Ch 27: Current and Resistance
- Ch 28: Direct-Current Circuits
- Ch 29: Magnetic Fields
- Ch 30: Sources of Magnetic Field

Suggested preparations:
- Go over homework problems
- Additional problems at the end of chapters
- Pay special attention to signs and directions!

Reviews:
- Lecture next Thursday
- There will be additional office hours next week (look for an email about this).
Ampere’s Law

- It applies to any closed path
- It applies to any static B field
- It is practically useful only in symmetric cases

- Ampere’s Law can be derived from Biot-Savart Law
Magnetic Field Around Infinite Straight Current

Use Ampere’s Law

\[\oint \vec{B} \cdot ds = \mu_0 I \]

for any closed path

to show that

\[B = \frac{\mu_0 I}{2\pi R} \]

around an infinite straight current.
Recall: Force On Current Carrying Wire

- Magnetic force on a current segment of length L in uniform field \mathbf{B}:

$$\mathbf{F}_B = \Sigma q\mathbf{v}_d \times \mathbf{B} = I\mathbf{L} \times \mathbf{B}$$
Exercise/Demo:
Magnetic Forces Between Two Parallel Current

Tips:
Parallel currents attract each other
Anti-Parallel currents repel each other

\[
\frac{F_B}{\ell} = \frac{\mu_0 I_1 I_2}{2\pi a}
\]
Example: Solenoid

The B field inside an ideal solenoid is:

$$B = \mu_0 n I$$

$\ n=N/L\

ideal solenoid

segment 3 at ∞
Compare Solenoid and Bar Magnet

http://www.societyofrobots.com/actuators_solenoids.shtml
More on this in Ch. 31.
Exercise: Toroid

Show the B field inside a toroid (donut shape) is (example 30.6):

hint: Use Ampere’s Law
(See board)

\[B = \frac{\mu_0 NI}{2\pi r} \]

A transformer from Radio Shack.
More on this in Ch. 31.
Quick reminder: Electric Dipole Moments

- Electric dipole moment \mathbf{p}.

Dielectric material contains electric dipoles at atomic level.

In an external field E_0, the dipoles line up E_{ind} is always opposite to E_0.

$E = E_0 / \kappa < E_0$, $C = \kappa C_0$

(dielectric constant $\kappa > 1$)

\[\sum \mathbf{F} = 0 \]
\[\vec{\tau} = \mathbf{p} \times \mathbf{E} \]
\[U = -\mathbf{p} \cdot \mathbf{E} \]
Quick reminder: Magnetic Dipole Moments

- Magnetic dipole moment μ.

 Macroscopic
 $\mu = I A$

 Microscopic
 $\mu \propto L$

 angular momentum of orbiting or spin

 definition of magnetic moment

Note: B produced (at the center) is always in the same direction as μ.
Magnetism in Matter

- Induced field B_{ind} in response to an external B_0: $B_{\text{ind}} = \chi B_0$
- the net field inside: $B = B_0 + B_{\text{ind}} = (1 + \chi) B_0 = (\mu_m/\mu_0) B_0$

μ_m: magnetic permeability, χ: magnetic susceptibility

Classification of Magnetic Matter

<table>
<thead>
<tr>
<th>Type</th>
<th>Direction of B_{ind}</th>
<th>Strength of B_{ind}</th>
<th>$\chi=\mu_m/\mu_0-1$</th>
<th>Contributing Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferromagnetic (e.g. Fe, Co, Ni...)</td>
<td>Same as B_0</td>
<td>Strong</td>
<td>$>>0$ ($\sim 10^3$)</td>
<td>Domain of Magnetic Dipole</td>
</tr>
<tr>
<td>Paramagnetic (e.g. Al, Ca,...)</td>
<td>Same as B_0</td>
<td>Weak</td>
<td>>0 ($\sim 10^{-5}$)</td>
<td>μ_{atoms}</td>
</tr>
<tr>
<td>Diamagnetic (e.g. Cu, Au,...)</td>
<td>Opposite</td>
<td>Weak</td>
<td><0 ($\sim -10^{-5}$)</td>
<td>Magnetic Quadruple</td>
</tr>
<tr>
<td>Superconductor</td>
<td>Opposite</td>
<td>$=-B_0$</td>
<td>-1</td>
<td>Quantum eff.</td>
</tr>
</tbody>
</table>
Permanent Magnetic Moments (domains)
Inside Ferromagnetic Material

No external B field, permanent mag. moments exist, but oriented randomly
→ no induced B field

B\(_0\) applied, permanent magnetic moments line up in the direction of B\(_0\)
→ strong induced B field
Meissner Effect

- Certain superconductors (type I) exhibit perfect diamagnetism in superconducting state:
 no magnetic field allowed inside (Meissner Effect)
Additional Resources

- Field visualization tools:
 - http://www.falstad.com/vector3dm/

- Floating frog and other objects:
 - http://www.ru.nl/hfml/research/levitation/diamagnetic/