Physics 202, Lecture 12

Today’s Topics

- Magnetic Field (Ch 29, part II)
- Motion of a Charged Particle In a Uniform \(\mathbf{B} \) Field
- Applications:
 - Magnetic Confinement
 - First Modern Particle Accelerator: Cyclotron
 - Mass Selector (\(\frac{q}{m} \))
- Force Between Two Current Carrying Wires
- Force and Torque on a Current Loop In Uniform \(\mathbf{B} \) Field
- Magnetic dipoles (will be reviewed next lecture)
- Example: Hall Effect (will be reviewed next lecture)

Properties of Magnetic Force

- Magnetic Force: \(\mathbf{F}_B = q \mathbf{v} \times \mathbf{B} \). \(\mathbf{F}_B = |q| \mathbf{v} \mathbf{B} \sin \theta \)
 - \(\mathbf{F}_B = 0 \) if \(\mathbf{v} = 0 \)
 - \(\mathbf{F}_B = 0 \) if \(\mathbf{v} \) and \(\mathbf{B} \) in \(0^\circ \) or \(180^\circ \)
 - \(\mathbf{F}_B \) is normal to \(\mathbf{v} \)
 - \(\mathbf{F}_B \) is normal to \(\mathbf{B} \)
 - work done by \(\mathbf{F}_B \) is always zero! (force is perpendicular to the displacement)
 - direction of \(\mathbf{F}_B \) are opposite for positive charge and negative charges.

Motion Of Charged Particle in a Uniform \(\mathbf{B} \) Field

- Exercise: Show that if a charged particle \(q \) of mass \(m \) in a uniform \(\mathbf{B} \) field has an initial velocity \(\mathbf{v} \) in the plane perpendicular to \(\mathbf{B} \), its motion is a uniform circular motion in that plane with
 - radius \(r = \frac{mv}{qB} \)
 - period:
 \(T = \frac{2\pi r}{v} = \frac{2\pi m}{qB} \)
 - Note: \(T \) is independent of \(v \)

(recall: uniform circular motion)
Application: Magnetic Confinement

- Tokamak
- Magnetic Bottle

MST: Madison Symmetric Torus

Application: Cyclotron

(First Modern Charged Particle Accelerator)

- First Cyclotron (1934)
- Lawrence & Livingston

Application: Mass Selector

- Speed selected: $v = \frac{E}{B}$
- Mass selected: $\frac{m}{q} = \frac{rB}{(E/B)}$
Mass spectrometry examples

- Analysis of proteins and peptides
- Volcanic ash content in Antarctic Ice

Mass Selector: J.J Thomson Apparatus (1897)
- This is your lab next week: measuring e/m

Magnetic Force On Current Carrying Wire Segment
- Magnetic force on a current segment of length L in uniform field B:
 $$F_B = 2qv_x B = I L x B$$
- Current: moving charges. $I = qnv_x A$
- Magnetic force on charge q: $qv_x B$
- $F_B = qv_x x B$ (ALn) = $I L x B$

Magnetic Force On A Current Carrying Wire

- Top View

Also demo: Bending electron beam
Magnetic Force On Current Carrying Wire

- Magnetic force on a curved wire in uniform field \(B \): \(\mathbf{F} = I \mathbf{L} \times \mathbf{B} \)

Note: Net force on a current loop in uniform \(B \) field is zero

Review Exercise: Forces On A Current Loop

- For a current loop in a uniform magnetic field as shown, what is the direction of the force on each side?

Torque on a Current Loop In Uniform \(B \) Field

- Exercise: For a current loop in a uniform \(B \) field, show that the torque on the loop is: \(\vec{\tau} = I \mathbf{A} \times \mathbf{B} \)

Conveniently, the result can be rewritten as:

Review: Electric Dipole Moments

- Electric dipole moment \(\mathbf{p} \):

\[\mathbf{p} = q \mathbf{d} \]

\[\sum \mathbf{F} = 0 \]

\[\vec{\tau} = \mathbf{p} \times \mathbf{E} \]

\[U = -\mathbf{p} \cdot \mathbf{E} \]
Magnetic Dipole Moments

- Magnetic dipole moment μ.

Macroscopic

$\mu = I A$

Microscopic

$\mu \propto L$

angular momentum of orbiting or spin

definition of magnetic moment

\[\sum F = 0 \]
\[\vec{\tau} = \vec{\mu} \times \vec{B} \]
\[U = -\vec{\mu} \cdot \vec{B} \]

μ in B Field