Schrodinger equation in 3D central force

\[\left(-\frac{\hbar^2}{2m} \nabla^2 + V(r)\right)\psi(r) = E\psi(r) \]

in spherical coordinates

\[\frac{d^2}{dr^2} \left(r^2 \frac{d}{dr} \right) \psi(r) = \frac{\hbar^2}{2m} \left(\frac{\sin \theta \frac{d}{d \theta} \sin \theta \frac{d}{d \theta} + \frac{1}{\sin^2 \theta} \frac{d^2}{d \phi^2} \right) \psi(r) = \frac{E}{\hbar^2} \]

separate coordinates

\[\psi(r) = R(r) Y_{\ell m}^\ell(\theta, \phi) \]

Radial equation with \(\ell^2 \) eigenvalue inserted.

\[\frac{d^2 R}{dr^2} + \frac{2}{r} \frac{dR}{dr} + \frac{2m}{\hbar^2} \left(E - V(r) - \frac{\hbar^2 \ell (\ell + 1)}{2m r^2} \right) R(r) = 0 \]

\(\ell = 0 \) square well \(V = -V_0 \) \(r < r_0 \) \(V = 0 \) outside

\[\frac{d^2 R}{dr^2} + \frac{2}{r} \frac{dR}{dr} + \frac{2m}{\hbar^2} \left(V_0 + E \right) R = 0 \quad r < r_0 \]

\[\frac{d^2 R}{dr^2} + \frac{2}{r} \frac{dR}{dr} - \frac{2m |E|}{\hbar^2} R = 0 \quad r > r_0 \]

To eliminate the first derivative, let \(U(r) = \frac{1}{r} R(r) \)

Then \(U(0) = 0 \) since \(R(r) \) is finite at the origin

\[R(r) = \frac{U(r)}{r} \quad R' = \frac{U'}{r} - \frac{U}{r^2} \]

\[R'' = \frac{U'' - 2U'}{r^2} + \frac{2U}{r^3} \]
wave eqn \[\frac{\partial^2 u}{\partial t^2} - \frac{2m}{\hbar^2} \left(V_0 - 1E_1 \right) u = 0 \]
gives \[\frac{\partial^2 u}{\partial t^2} + \frac{2m}{\hbar^2} \left(V_0 - 1E_1 \right) u = 0 \quad r < r_0 \]
and \[\frac{\partial^2 u}{\partial t^2} - \frac{2m}{\hbar^2} \left(1E_1 \right) u = 0 \quad r > r_0 \]

This looks just like the one dimensional equation, except that \(u(0) = 0 \) and there is nothing for \(r < 0 \) (negative x).

The ground state is the first odd parity solution to the 1-D problem.

\[\frac{mV_0 a^2}{2\hbar^2} > \frac{1}{4} \]

\[\frac{a}{2} + \frac{aV_0}{2} = r_0 \]

for a bound state.

So it is possible in 3-D to have a well so weak that there are no bound states. Not true in 1-D.

Coulomb problem \[V(r) = -\frac{Ze^2}{4\pi\epsilon_0 r} \]
\[\frac{\partial^2 R}{\partial t^2} + \frac{2}{r} \frac{\partial R}{\partial t} + \frac{2m}{\hbar^2} \left(E + \frac{Ze^2}{4\pi\epsilon_0 r} - \frac{Ze^2}{4\pi\epsilon_0 r} \right) R = 0 \]

\[E = -|E_1| \] is negative for a bound state.

Asymptotic form \[E = -|E_1| \]
\[\frac{\partial^2 R}{\partial t^2} - \frac{2m}{\hbar^2} |E_1| R = 0 \]
\[R(r) \to \left(\frac{2m|E_1|}{\hbar^2} \right)^{1/2} \rho \quad \text{as } r \to \infty \]
effective potential: \(U(r) = -\frac{2e^2}{4\pi\varepsilon_0 r} + \frac{r^2 \mu}{2m r^2} \)

As you increase \(l \), the centrifugal repulsion term dominates as \(r \to 0 \). But the energy level \(-|E_l|\) stays constant.

Turning points of the classical ellipse are shown for \(l \neq 0 \).

Classically \(E \) can be increased until \(|E_l| \) is just tangent, giving a circular orbit with radius \(r_0 \).

\[|E_l| = \frac{2e^2}{4\pi\varepsilon_0} \frac{1}{2} \frac{m^2 c^2 \hbar^2}{2r_0} \]

Classically, \(E \) can be increased until \(|E_l| \) is just tangent, giving a circular orbit with radius \(r_0 \).

\[|E_l| \text{ for a circular orbit is } \frac{\alpha^2 mc^2 \hbar^2}{2} \]

which gives the Bohr formula for \(\alpha^2 = \frac{e^2}{\hbar^2} \) (Bohr's hypothesis) but doesn't quite work for \(\alpha^2 = \frac{e^2}{\hbar^2} x (x+1) \)
anticipating the Bohr formula \(1E_1 = \frac{Z^2 e^2}{4\pi \hbar^2} \frac{I}{L} \frac{1}{a_0 M^2} \)

\(a_0 = \text{Bohr radius} = \frac{4\pi e^2}{m_e c^2} \)

So \(2m_1E_1 = \frac{Z^2 m_e c^2}{\hbar^2} \frac{I}{L} \frac{1}{a_0 M^2} = \frac{Z^2}{a_0 \hbar^2} \left(\frac{2m_1E_1}{\hbar^2} \right) = \frac{Z}{a_0 M} \)

and the asymptotic form

\(R(r) \to e^{-\frac{r}{a_0}} \)

Note that unlike the harmonic oscillator, where

\(\psi(x) \to e^{-\frac{1}{2}x^2} \) is independent of the energy level,

here the asymptotic form depends on \(\frac{1}{n} \). Higher quantum numbers have less damping.

Also, the damping is exponential rather than Gaussian.

\(R(r) = e^{-\frac{2\pi}{a_0}} \) is the correct wave function

for the ground state, for which \(l=0 \).

\(R' = -\frac{Z}{a_0} R \quad R'' = -\frac{Z^2}{a_0^2} R \) ; then if \(l=0 \)

\(\frac{Z^2}{a_0^2} + \frac{2m_1 (Z^2 e^2}{4\pi \hbar^2} \frac{I}{L} \frac{1}{a_0 M^2} = 0 \)

Matching terms gave \(1E_1 = \frac{Z^2 e^2}{2a_0^2 M} \) and \(\frac{Z^2 e^2}{4\pi \hbar^2} \frac{I}{L} \frac{1}{a_0 M^2} = \frac{Z}{a_0 M} \) or \(a_0 = \frac{\hbar^2 m_e c^2}{Z e^2} \)

both of which are true.

The ground state energy is \(E_{l=1} = -\frac{Z^2 e^2}{2a_0^2 M^2} \quad a_0 = \frac{\hbar}{mc} \frac{1}{L} \) so \(E_{l=1} = -\frac{Z^2 e^2}{2m (\frac{m e^2 c^2}{\hbar^2})} = \frac{Z}{2} \)
The radial wave function $R_{n\ell}(r)$ depend on the principal quantum number n and the orbital quantum number ℓ. But the energy eigenvalues depend only on n.

The complete solution to the radial equation proceeds like the harmonic oscillator.

1. Make the equation dimensionless $p = \alpha r$

 \[\frac{\alpha}{2} = \left(\frac{2mE_1}{\hbar^2} \right)^{1/2} \]

 so the asymptotic form

 \[R(p) \to e^{-p/2} \]

 \[p \to \infty \]

 Then factor $R(p) = F(p) e^{-p/2}$

 gives a differential equation for $F(p)$.

2. Expand $F(p) = \sum a_\ell p^\ell$ and get a recursion formula. The dimensionless differential equation is

 \[\frac{1}{p^2} \frac{d}{dp} \left(p^2 \frac{dR}{dp} \right) + \left(\lambda - \frac{1}{4} - \frac{\ell(\ell+1)}{p^2} \right) R = 0 \]

 and

 \[F'' + \left(\frac{2}{p} - 1 \right) F' + \left(\frac{\lambda - 1}{p} - \frac{\ell(\ell+1)}{p^2} \right) F = 0 \]

 \[\lambda = \frac{2e^2}{\hbar^2} \frac{1}{M} \left(\frac{M}{2\hbar^2} \right)^{1/2} \]

 The recursion formula is

 \[a_{\ell+1} = \frac{(k+\ell+1-\lambda)}{(k+1)(k+2\ell+2)} a_k; \quad a_k \to \frac{1}{\ell} \text{ as } k \to \infty \]

 which is like e^p, requiring the series to terminate.
a_k \neq 0 \text{ but } a_{k+1} = 0 \Rightarrow \lambda = k+l+1

K is an integer in the power series (which becomes a polynomial), \(\lambda = m \) is the principal quantum number, \(M = k+l+1 \).

Since \(K = 0 \) is the lowest value in the power series, for a given \(M \), the max value of \(L \) is \(L = M-1 \).

Hence given \(M, L = 0, 1, 2 \ldots M-1 \) in integer steps, the polynomials \(F_k(p) \) are called Laguerre polynomials (another French mathematician!)

Spectroscopic notation:
- \(L = 0 \) s-wave
- \(L = 1 \) p-wave
- \(L = 2 \) d-wave
- \(L = 3 \) f-wave

State wave function:
\[
\psi_{100} = \frac{2}{a_0^{3/2}} e^{-\frac{r}{a_0}} Y_0(\theta, \phi)
\]

\[
\psi_{200} = \frac{2}{(2a_0)^{3/2}} (1 - \frac{r}{2a_0}) e^{-\frac{r}{2a_0}} Y_0
\]

\[
\psi_{11} = \frac{1}{\sqrt{3}} (2a_0^{3/2} a_0 - \frac{r}{2a_0}) Y_1^0 - \frac{1}{\sqrt{3}} (2a_0^{3/2} a_0 + \frac{r}{2a_0}) Y_{-1}^0
\]

\[
\psi_{300} = \frac{2}{3(3a_0)^{3/2}} \left(3 - \frac{2r}{a_0} + 2 \left(\frac{r}{3a_0} \right)^2 \right) e^{-\frac{r}{3a_0}} Y_0
\]
A few notes: For atomic number \(Z = a_0 \rightarrow a_0/2 \)

Only the s wave \((l=0)\) radial wave function are finite at \(r=0 \). In fact \(R_{nl}(r) \sim r^l \)

The constants normalize the radial wave function:

\[
\int_0^{\infty} r^2 dr (R_{nl}(r))^2 = 1
\]

The spherical harmonics are already normalized.

The wave functions are orthogonal. \(Y_m \) takes care of \(m \) and \(R_{nl}(r) \) takes care of \(n \). The radial integrals have the form of factorials \((\Gamma\text{ functions})\)

\[
\int_0^\infty x^2 e^{-x} dx = \Gamma(3) = 2!, \quad \int_0^\infty x^{2-1} e^{-x} dx = \Gamma(2) = 1
\]

shows that \(0! = 1! = 1 \quad 0 \geq 1 \)