Preliminary Mathematics Problems

1. \[ax^2 + bx + c = 0\]
 Solve for \(x\) in terms of \(a, b, c\)

2. a) \(\ln(e^a) = \)
 b) \(\ln(xy) = \)
 c) \(\ln\left(\frac{x}{y}\right) = \)
 d) \(\ln(a^x) = \)
 e) \(e \approx \) (3 digits)

3. a) \(\log(10^n) = \)
 b) \(\log(1000) = \)
 c) \(\log(0.01) = \)

4. See figure at right:
 a) Area of circle =
 b) Circumference of circle =
 c) \(360^\circ = ? \) radians
 d) \(\pi \approx \) (3 digits)

5. See figure. Express in terms of \(a, b \& c\):
 a) \(\sin \alpha = \)
 b) \(\cos \alpha = \)
 c) \(\sin \beta = \)
 d) \(\cos \beta = \)
 e) \(\tan \alpha = \)

6. f) Express \(c\) in terms of \(a \& b\):
 g) Express \(\alpha\) in terms of \(\beta\):
 h) Area of triangle =
7. Simplify expressions
 a) \(\sin(-\alpha) = -\sin \alpha \) [Example]
 b) \(\cos(-\alpha) = \)
 c) \(\sin(90^\circ - \alpha) = \)
 d) \(\cos(90^\circ - \alpha) = \)
 e) \(\sin(180^\circ - \alpha) = \)
 f) \(\sin(180^\circ + \alpha) = \)

8. \(\sin 0^\circ = \)
 \(\cos 0^\circ = \)
 \(\sin 90^\circ = \)
 \(\cos 90^\circ = \)
 \(\sin 180^\circ = \)
 \(\cos 180^\circ = \)
 \(\sin 270^\circ = \)
 \(\cos 270^\circ = \)
 \(\tan 0^\circ = \)
 \(\tan 45^\circ = \)

9. See figure below:

 ![Triangle Diagram](image)

 a) Express \(C \) in terms of \(A, B \) & \(\gamma \).
 b) " \(B \) in terms of \(A, C \) & \(\beta \).
 c) " \(A \) in terms of \(B, C \) & \(\alpha \).

10. Same triangle above:
 a) Express \(A \) in terms of \(B, \beta \) & \(\alpha \)
 b) " \(B \) in terms of \(A, \beta \) & \(\alpha \)
 \(B \) in terms of \(C, \beta \) & \(\gamma \)
 \(C \) in terms of \(A, \alpha \) & \(\gamma \)

11. Express the area of the (same) triangle:
 a) in terms of \(A, C \) & \(\beta \)
 b) in terms of \(A, B \) & \(\gamma \).
 c) Express \(\alpha \) in terms of \(\beta \) & \(\gamma \).
12. a) Volume of a sphere of radius r
 b) Surface area of a sphere of radius r.

13. Metric prefixes:

 - k means 10^3, is written **kilo**. [example]
 - **p**
 - **n**
 - **μ**
 - **m**
 - **M**
 - **G**

14. Write down the first and second derivatives of the following functions
 (a, b, c & ω are constants)

 a) $\frac{d}{dx} (ax + b) =$
 f) $\frac{d^2}{dx^2} (ax + b) =$

 b) $\frac{d}{dx} (ax^2 + bx + c) =$
 g) $\frac{d^2}{dx^2} (ax^2 + bx + c) =$

 c) $\frac{d}{dx} \left(\frac{a}{x} \right) =$
 h) $\frac{d^2}{dx^2} \left(\frac{a}{x} \right) =$

 d) $\frac{d}{dt} \sin(\omega t + a) =$
 i) $\frac{d^2}{dt^2} \sin(\omega t + a) =$

 e) $\frac{d}{dt} \cos(\omega t + a) =$
 j) $\frac{d^2}{dt^2} \cos(\omega t + a) =$
15. Write down the indefinite and definite integrals of the following functions

a) \(\int a \, dx = \)

b) \(\int (ax + b) \, dx = \)

c) \(\int (ax^2 + bx + c) \, dx = \)

d) \(\int \cos (wt) \, dt = \)

e) \(\int \sin (wt) \, dt = \)

f) \(\int_1^2 \alpha \, dx = \)

g) \(\int_0^2 (ax + b) \, dx = \)

h) \(\int_0^2 (ax^2 + bx + c) \, dx = \)

i) \(\int_0^{\pi/2w} \cos (wt) \, dt = \)

j) \(\int_0^{\pi/2w} \sin (wt) \, dt = \)

16. Given the function: \(x(t) = -3t^2 + 13t + 10, \) find the maximum value of \(x \) and the value of \(t \) for which this maximum occurs.