Lecture 14

Goals:
• Chapter 10
 v Understand the relationship between motion and energy
 v Define Kinetic Energy
 v Define Potential Energy
 v Define Mechanical Energy
 v Exploit Conservation of energy principle in problem solving
 v Understand Hooke’s Law spring potential energies
 v Use energy diagrams

Assignment:
1 HW6 due Tuesday Oct. 25th
1 For Monday: Read Ch. 11

Kinetic & Potential energies

1 Kinetic energy, $K = \frac{1}{2} mv^2$, is defined to be the large scale collective motion of one or a set of masses

1 Potential energy, U, is defined to be the “hidden” energy in an object which, in principle, can be converted back to kinetic energy

1 Mechanical energy, E_{Mech}, is defined to be the sum of U and K

1 Others forms of energy can be constructed
Recall if a constant force over time then

\[y(t) = y_i + v_{yi} t + \frac{1}{2} a_y t^2 \]

\[v(t) = v_{yi} + a_y t \]

Eliminating \(t \) gives

\[2 a_y (y - y_i) = v_x^2 - v_{yi}^2 \]

\[m a_y (y - y_i) = \frac{1}{2} m (v_x^2 - v_{yi}^2) \]

Energy (dropping a ball)

\[-mg (y_{final} - y_{init}) = \frac{1}{2} m (v_{y_{final}}^2 - v_{y_{init}}^2)\]

A relationship between \(y - \) displacement and change in the \(y \)-speed squared

Rearranging to give initial on the left and final on the right

\[\frac{1}{2} m v_{yi}^2 + mg y_i = \frac{1}{2} m v_{yf}^2 + mg y_f \]

We now define \(mgy = U \) as the “gravitational potential energy”
Energy (throwing a ball)

1. Notice that if we only consider gravity as the external force then the x and z velocities remain constant.
2. To \[\frac{1}{2} m v_{yi}^2 + mgy_i = \frac{1}{2} m v_{yi}^2 + mgy_f \]
3. Add \[\frac{1}{2} m v_{xi}^2 + \frac{1}{2} m v_{zi}^2 \text{ and } \frac{1}{2} m v_{xf}^2 + \frac{1}{2} m v_{zf}^2 \]
4. \[\frac{1}{2} m v_i^2 + mgy_i = \frac{1}{2} m v_f^2 + mgy_f \]
5. where \[v_i^2 = v_{xi}^2 + v_{yi}^2 + v_{zi}^2 \]

\[\frac{1}{2} m v^2 = K \] terms are defined to be kinetic energies
(A scalar quantity of motion)

When is mechanical energy not conserved

1. Mechanical energy is **not** conserved when there is a process which can be shown to transfer energy out of a system and that energy cannot be transferred back.
Inelastic collision in 1-D: Example 1

A block of mass M is initially at rest on a frictionless horizontal surface. A bullet of mass m is fired at the block with a muzzle velocity (speed) v. The bullet lodges in the block, and the block ends up with a speed V.

What is the initial energy of the system?
What is the final energy of the system?
Is energy conserved?

\[
\begin{align*}
\text{before} & \quad \rightarrow \quad \text{after} \\
\end{align*}
\]

Physics 207: Lecture 14, Pg 7

Inelastic collision in 1-D: Example 1

What is the momentum of the bullet with speed v? $m\vec{v}$

What is the initial energy of the system? $\frac{1}{2}mv^2$

What is the final energy of the system? $\frac{1}{2}(m+M)V^2$

Is momentum conserved (yes)?
Is energy conserved? Examine $E_{\text{before}} - E_{\text{after}}$

\[
\begin{align*}
\frac{1}{2}mv^2 - \frac{1}{2}(m+M)V^2 & = \frac{1}{2}mv^2 - \frac{1}{2}(mv)\frac{m}{m+M}V = \frac{1}{2}mv^2 \left(1 - \frac{m}{m+M}\right)\\
\end{align*}
\]

\[
\begin{align*}
\text{before} & \quad \rightarrow \quad \text{after} \\
\end{align*}
\]

Physics 207: Lecture 14, Pg 8
Elastic vs. Inelastic Collisions

1. A collision is said to be *inelastic* when “mechanical” energy (\(K + U \)) is not conserved before and after the collision.
2. How, if no net Force then momentum will be conserved.
 \[
 K_{\text{before}} + U \neq K_{\text{after}} + U
 \]
3. E.g. car crashes on ice: Collisions where objects stick together

1. A collision is said to be *perfectly elastic* when both energy & momentum are conserved before and after the collision.
 \[
 K_{\text{before}} + U = K_{\text{after}} + U
 \]
2. Carts colliding with a perfect spring, billiard balls, etc.

Energy

1. If only “conservative” forces are present, then the mechanical energy of a system is conserved

For an object acted on by gravity

\[
\frac{1}{2} m v_i^2 + mgy_i = \frac{1}{2} m v_f^2 + mgy_f
\]

\[
E_{\text{mech}} = K + U = \text{constant}
\]

\(E_{\text{mech}} \) is called “mechanical energy”

\(K \) and \(U \) may change, \(K + U \) remains a fixed value.
Example of a conservative system: The simple pendulum.

Suppose we release a mass \(m \) from rest a distance \(h_1 \) above its lowest possible point.

\(\checkmark \) What is the maximum speed of the mass and where does this happen?

\(\checkmark \) To what height \(h_2 \) does it rise on the other side?

Example: The simple pendulum.

\(\checkmark \) What is the maximum speed of the mass and where does this happen?

\[E = K + U = \text{constant} \] and so \(K \) is maximum when \(U \) is a minimum.
Example: The simple pendulum.

What is the maximum speed of the mass and where does this happen?

\[E = K + U = \text{constant and so } K \text{ is maximum when } U \text{ is a minimum} \]

\[E = mgh_1 \text{ at top} \]

\[E = mgh_1 = \frac{1}{2} mv^2 \text{ at bottom of the swing} \]

To what height \(h_2 \) does it rise on the other side?

\[E = K + U = \text{constant and so when } U \text{ is maximum again (when } K = 0) \text{ it will be at its highest point.} \]

\[E = mgh_1 = mgh_2 \text{ or } h_1 = h_2 \]
Potential Energy, Energy Transfer and Path

1. A ball of mass m, initially at rest, is released and follows three different paths. All surfaces are frictionless.
 1. The ball is dropped
 2. The ball slides down a straight incline
 3. The ball slides down a curved incline

After traveling a vertical distance h, how do the three speeds compare?

(A) $1 > 2 > 3$ (B) $3 > 2 > 1$ (C) $3 = 2 = 1$ (D) Can’t tell

Example
The Loop-the-Loop … again

1. To complete the loop the loop, how high do we have to let the release the car?
2. Condition for completing the loop the loop: Circular motion at the top of the loop ($a_c = v^2 / R$)
3. Exploit the fact that $E = U + K = constant$! (frictionless)

Recall that “g” is the source of the centripetal acceleration and N just goes to zero is the limiting case.
Also recall the minimum speed at the top is $v = \sqrt{gR}$
Example
The Loop-the-Loop ... again

1. Use $E = K + U = \text{constant}$
2. $mg h + 0 = mg 2R + \frac{1}{2} m v^2$
 $mg h = mg 2R + \frac{1}{2} mgR = \frac{5}{2} mgR$

\[h = \frac{5}{2} R \]

Variable force devices: Hooke’s Law Springs

1. Springs are everywhere,

 \[F_s = - k \Delta s \]

 Δs is the amount the spring is stretched or compressed from its resting position.
Exercise Hooke’s Law

What is the spring constant “k”?

(A) 50 N/m (B) 100 N/m (C) 400 N/m (D) 500 N/m

F vs. Δx relation for a foot arch:

![Diagram of F vs. Δx relation for a foot arch]
Force vs. Energy for a Hooke’s Law spring

1. \(F = -k(x - x_{\text{equilibrium}}) \)
2. \(F = ma = m \frac{dv}{dt} \)
 - \(= m \left(\frac{dv}{dx} \frac{dx}{dt} \right) \)
 - \(= m \frac{dv}{dx} v \)
 - \(= mv \frac{dv}{dx} \)
3. So \(-k(x - x_{\text{equilibrium}}) \frac{dx}{dt} = mv \frac{d^2v}{dx^2} \)
4. Let \(u = x - x_{\text{eq.}} \) & \(du = dx \)

\[
-\frac{1}{2} ku^2 \bigg|_{u_i}^{u_f} = \frac{1}{2} mv_i^2 \bigg|_{v_f}^{v_i} \\
-\frac{1}{2} ku_i^2 + \frac{1}{2} ku_f^2 = \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2
\]

\[
\frac{1}{2} ku_i^2 + \frac{1}{2} mv_i^2 = \frac{1}{2} ku_f^2 + \frac{1}{2} mv_f^2
\]

Energy for a Hooke’s Law spring

\[
\frac{1}{2} ku_i^2 + \frac{1}{2} mv_i^2 = \frac{1}{2} ku_f^2 + \frac{1}{2} mv_f^2
\]

1. Associate \(\frac{1}{2} ku^2 \) with the “potential energy” of the spring

\[
U_{si} + K_i = U_{sf} + K_f
\]

1. Ideal Hooke’s Law springs are conservative so the mechanical energy is constant
Energy diagrams

In general:

\[u = x - x_{eq} \]

Spring/Mass system

Ball falling

Equilibrium

Example

Spring: \(F_x = 0 \Rightarrow \frac{dU}{dx} = 0 \) for \(x = x_{eq} \)

The spring is in equilibrium position

In general: \(\frac{dU}{dx} = 0 \) for ANY function establishes equilibrium

stable equilibrium

unstable equilibrium
Comment on Energy Conservation

1. We have seen that the total kinetic energy of a system undergoing an inelastic collision is not conserved.
 - Mechanical energy is lost:
 - Heat (friction)
 - Bending of metal and deformation

1. Kinetic energy is not conserved by these non-conservative forces occurring during the collision!

1. Momentum along a specific direction is conserved when there are no external forces acting in this direction.
 - In general, easier to satisfy conservation of momentum than energy conservation.

Comment on Energy Conservation

1. We have seen that the total kinetic energy of a system undergoing an inelastic collision is not conserved.
 - Mechanical energy is lost:
 - Heat (friction)
 - Deformation (bending of metal)

1. Mechanical energy is not conserved when non-conservative forces are present!

1. Momentum along a specific direction is conserved when there are no external forces acting in this direction.
 - Conservation of momentum is a more general result than mechanical energy conservation.