Today’s Topics

- Calculate Electric Field With Superposition (Direct Sum/Integral of Coulomb’s Law)
- Calculate Electric Field With Gauss’s Law
 - Gauss’s Law
 - Examples

Expected from preview:
Calculate E with continuous charge.
Surface, closed surface, surface integral, flux, the Gauss’s Law.
Review: Electric Field and Electric Force

Electric Field is a form of matter. It carries energy (later in the semester)
How to Calculate Electric Field?

- **Single point-like:**
 \[\vec{E} = k_e \frac{q_0}{r^2} \hat{r} \]

- **Multiple charges:**
 \[\vec{E} = k_e \sum \frac{q_i}{r_i^2} \hat{r}_i \]
 (superposition principle)

- **Continuous Charge Distribution:**
 \[\vec{E} = k_e \lim_{\Delta q \to 0} \sum \frac{\Delta q_i}{r_i^2} \hat{r}_i = k_e \int \frac{dq}{r^2} \hat{r} \]

Note: For now, we assume charges are not moving. (electrostatic)
Example: Charged Rod

- A uniformly charged rod of length \(L \) has a total charge \(Q \), find the electric field:
 - at point A \(\rightarrow \) answer: \(E_x = -k_e Q/(a(L+a)) \), \(E_y = 0 \) (see board)
 - at point B \(\rightarrow \) answer: \(E_y = 2k_e Q/(Lb) \sin \theta_0 \), \(E_x = 0 \) \(\tan \theta_0 = -L/b \) (see board, show method only)
 - at an arbitrary point C. (see board, conceptual only).

Calculus Requirements in this Course

The level of calculus shown in this example:

1: Shall be understood at conceptual level.
2: Will be practiced in HW problems
3: Will not be tested in the exam.
(some less complicated forms might be in exams)
Example: Uniformly Charged Sphere

- A uniformly charged sphere has a radius \(a \) and total charge \(Q \), find the electric field outside and inside the sphere.

- Solution:

...

Don’t take notes of my solution: I AM FOOLING AROUND!
It is very complicated with the superposition method!

⇒ Gauss’s Law to the rescue!
Electric Flux

- The electric flux through a surface element is defined as the dot product of the electric field and the surface area vector:
 \[\Delta \Phi_E = \mathbf{E} \cdot \Delta \mathbf{A} = E \Delta A \cos \theta \]

- The net electric flux through a closed surface

\[\Phi_E \equiv \oint \mathbf{E} \cdot d\mathbf{A} \]
Gauss’s Law

Net electric flux through any **closed** surface (“Gaussian surface”) equals the total charge enclosed inside the closed surface divided by the permittivity of free space.

\[\Phi_E = \oint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{encl}}{\varepsilon_0} \]

- **electric flux** \(q_{encl} \): all **charges** enclosed regardless of positions
- \(\Phi_E \): net electric flux
- \(\oint \): line integral
- \(\mathbf{E} \): electric field
- \(d\mathbf{A} \): differential area
- \(\varepsilon_0 \): permittivity constant

\[(4\pi\varepsilon_0)^{-1} = k \]
Trivia Quiz 1

- Compare electric fluxes through closed surfaces s_1, s_2, s_3:
 1. $\Phi_{s_1} > \Phi_{s_2} > \Phi_{s_3}$
 2. $\Phi_{s_1} = \Phi_{s_2} = \Phi_{s_3}$
 3. $\Phi_{s_1} < \Phi_{s_2} < \Phi_{s_3}$
Trivia Quiz 2

What is the electric flux through closed surface S?

1. $\Phi = 0$
2. $\Phi = \frac{q_1+q_2+q_3+q_4+q_5}{\varepsilon_0}$
3. $\Phi = \frac{q_1+q_2+q_3}{\varepsilon_0}$
Uniformly Charged Sphere Again

Solution using Gauss’s Law:

\[\oint \mathbf{E} \cdot d\mathbf{A} = \frac{1}{\varepsilon_0} q_{in} \]

The setting is highly symmetrical:

→ Gaussian surface will be concentric sphere of radius \(r \).

How to evaluate \(\oint \mathbf{E} \cdot d\mathbf{A} \)?

Note the symmetry:

→ Direction of \(\mathbf{E} \): Radial
→ Magnitude of \(\mathbf{E} \): Same in all direction

\[\oint \mathbf{E} \cdot d\mathbf{A} = \oint EdA = E \oint dA = EA = 4\pi r^2 E \]
Uniformly Charged Sphere: Details

\[\oint \vec{E} \cdot d\vec{A} = 4\pi r^2 E = \frac{1}{\varepsilon_0} q_{in} \]

where:
\[q_{in} = \begin{cases}
Q & \text{if } r>a \\
\frac{Q}{r^3} & \text{if } r<a
\end{cases} \]

\[E = \frac{1}{4\pi r^2 \varepsilon_0} q_{in} \]
Uniform Charge Sphere: Final Solution

Note:
This has the same form as the point charge

\[E = \frac{k_e Q}{a^3} \]

inside outside
Procedure to Use Gauss’s Law

![Gauss's Law Equation]

- **General principle:**
 Gauss’s law is valid for any charge distributions, but practically it is useful only in limited situations where the charge distribution is highly symmetric.

- **Procedure:**
 1. Draw a Gaussian surface passing the field point concerned. Observe symmetry so that the surface integral is trivial.
 - **Direction of E:** Either perpendicular or parallel to the surface.
 - **Magnitude of E:** The same (or be zero) on the surfaces.
 2. Evaluate the surface integral using **arguments of symmetry**. And Equate the surface integral to \(\frac{q_{in}}{\varepsilon_0} \) and solve for \(E \).
Three Common Symmetric Cases

Spherical
(point Q, uniform sphere, shell)

Cylindrical
(infinite line/cylinder of Q)

Planar
(infinite sheet of Q)

The above symmetric settings give very predictable E

→ Direction: Normal to surfaces of same symmetry
→ Magnitude: Same across surface (of same symmetry)

\[\oint \vec{E} \cdot d\vec{A} = E \, A \]
Another Example: Thin Spherical Shell

- Find the E field inside/outside a uniformly charged thin sphere.

Solution: Exercise with your TAs.

![Gaussian Surface for E(outside) and E(inside)]

Result: \(E_{\text{in}} = 0\)
Table 24.1

Typical Electric Field Calculations Using Gauss’s Law

<table>
<thead>
<tr>
<th>Charge Distribution</th>
<th>Electric Field</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulating sphere of radius R, uniform charge density, and total charge Q</td>
<td>$k_e \frac{Q}{r^2}$</td>
<td>$r > R$</td>
</tr>
<tr>
<td></td>
<td>$k_e \frac{Q}{R^2} \cdot r$</td>
<td>$r < R$</td>
</tr>
<tr>
<td>Thin spherical shell of radius R and total charge Q</td>
<td>$k_e \frac{Q}{r^2}$</td>
<td>$r > R$</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>$r < R$</td>
</tr>
<tr>
<td>Line charge of infinite length and charge per unit length λ</td>
<td>$2k_e \frac{\lambda}{r}$</td>
<td>Outside the line</td>
</tr>
<tr>
<td>Infinite charged plane having surface charge density σ</td>
<td>$\frac{\sigma}{2\varepsilon_0}$</td>
<td>Everywhere outside the plane</td>
</tr>
<tr>
<td>Conductor having surface charge density σ</td>
<td>$\begin{cases} \frac{\sigma}{\varepsilon_0} \ 0 \end{cases}$</td>
<td>Just outside the conductor, Inside the conductor</td>
</tr>
</tbody>
</table>

© 2004 Thomson - Brooks/Cole
One More Exercise On Gauss’s Law

Two charges +2Q and –Q are placed at locations shown. Find the electric field at point P.

Solution:
1. Draw a Gaussian surface passing P
2. Apply Gauss’s law:
 \[\oint E \cdot dA = \frac{q_{in}}{\varepsilon_0} \]
3. \(q_{in} = +2Q + (-Q) = Q \)
4. Surface integral:
 \[\oint E \cdot dA = 4\pi r^2 E \]
5. \(\Rightarrow E = \frac{1}{4\pi \varepsilon_0} \left(\frac{Q}{r^2} \right) \)

Is this correct? No! Which step is wrong? step 4