Physics 202, Lecture 2

Today’s Topics

- Electric Force and Electric Fields
 - Electric Charges and Electric Forces
 - Coulomb’s Law
 - Physical Field
 - The Electric Field
 - Electric Field Lines
- Motion of Charged Particle in Electric Field

Demo: Two Types of Electric Charges

Opposite signs attract Like signs repel

Properties of Electric Charges

- 2+1 types: positive, negative (+neutral).
- Unit: Coulomb (C). 1 C= charge of 6.24×10^{18} protons.
- Building blocks of matters:
 - Electric charge is quantized: $q=\pm Ne$, $e=1.602 \times 10^{-19}$ C
 - Electric charge is conserved: charges can be moved around, but the total charge remains the same.
 - For deep thinkers: Why electrons and protons have the same electric charge?

<table>
<thead>
<tr>
<th>Charge (C)</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron</td>
<td>$-e=1.602 \times 10^{-19}$</td>
</tr>
<tr>
<td>Proton</td>
<td>$+e=1.602 \times 10^{-19}$</td>
</tr>
<tr>
<td>Neutron</td>
<td>0</td>
</tr>
</tbody>
</table>

Electric Force And Coulomb’s Law

- Electric forces exist between two charged particles
- The direction of electric force depends on the signs of the charges:
 - forces between opposite sign charges are attractive
 - forces between like sign charges are repulsive
- The magnitude of the electric forces for point charges (Coulomb’s Law)
 $$F = \frac{kq_1q_2}{r^2}$$
 Coulomb Constant: $k = 8.987 \times 10^9$ Nm2/C$^2 = \frac{1}{4\pi \varepsilon_0}$
 ε_0: permittivity of free space

Numeric Examples: Electric Force Is Strong

- Electric force between two 1C charges 1 meter apart: $F=8.99 \times 10^9$N
- Proton and electron in a hydrogen atom:
 - $q_{\text{electron}}= -1.6 \times 10^{-19}$ C, $q_{\text{proton}}= 1.6 \times 10^{-19}$ C, $r=5.3 \times 10^{-11}$m
 - Electric force $F= 8.2 \times 10^{-4}$ N.
 - This force is large:
 - Compared to the mass of proton: 1.673×10^{-27} kg
 - Compared to the gravitational forces between them: $F_0 = 3.6 \times 10^{-24}$N (recall: $F_0=Gm_1m_2/r^2$)
- Four fundamental forces:
 - Strong > Electromagnetic > Weak >> Gravitational

Coulomb’s Law in Vector Form

E. Force on q_2 by q_1: $\vec{F}_{12} = k \frac{q_1q_2}{r^2} \hat{r}$

E. Force on q_1 by q_2: $\vec{F}_{21} = k \frac{q_2q_1}{r^2} \hat{r} = -\vec{F}_{12}$

- Exercise:
 Use this vector form to verify the attractive/repulsive feature
- Note:
 Multiple particles on charge i, $\vec{F}_i = \vec{F}_{1i} + \vec{F}_{2i} + \vec{F}_{3i} + \ldots$
Quick Quiz

- Two charges, \(q_1 = 0.1 \text{C} \) and \(q_2 = 5q_1 \) (i.e. \(0.5 \text{C} \)), are separated by a distance \(r = 1 \text{m} \). Let \(F_2 \) denote the force on \(q_1 \) (exerted by \(q_2 \)), and \(F_1 \) denotes the force on \(q_2 \) (exerted by \(q_1 \)). Which of the following relationship is true?
 - \(F_1 = 5F_2 \)
 - \(F_1 = -5F_2 \)
 - \(F_2 = -5F_1 \)
 - \(F_1 = -F_2 \)

Properties of the Electric Force

- It is one of four fundamental forces: Strong > Electromagnetic > weak >> gravity
- It is proportional to \(1/r^2 \): double \(r \) \(\rightarrow \) \(\frac{1}{4} F \)
- Its direction is charge sign dependent: like sign \(\rightarrow \) repulsive, opposite sign \(\rightarrow \) attractive
- It is a conservative force. (Work independent of path)

\[W = \int \vec{F} \cdot d\vec{r} = -\frac{k q_1 q_2}{r_f} + \frac{k q_1 q_2}{r_i} = (-U_f) - (-U_i) \]

\[U = \frac{k q_1 q_2}{r} \]

Note the similarities and differences to gravity

A Very Important Concept: Field

- What is a physical “field”?

Field: A physical quantity which has a physical value* at each point in space (i.e. a distribution).

Examples of physical fields:
- temperature, wind speed, electric field, magnetic field, ...

- In this course, we consider only scalar and vector forms of physical quantities.

Example of Scalar and Vector Fields

- Temperature (scalar)
- Wind speed (vector)

Measurement can be made at any point on the map.

The Coulomb’s Law Revisited

- Original (Coulomb’s) view of electric force: \(q_1 \) directly applies an electric force on \(q_2 \)

\[\vec{F}_{12} = K \frac{q_1 q_2}{r_{12}^2} \]

- Field view of electric force:
 - \(q_1 \) creates an electric field \(\vec{E} \) around it
 - The electric field \(\vec{E} \) applies a force on \(q_2 \)

\[\vec{F}_2 = K \frac{q_1 q_2}{r_{12}^2} \]

In this field view:
- \(q_1 \): source charge
- \(q_2 \): test charge
- \(\vec{E} \) independent of \(q_2 \)

Electric Field and Electric Force

- \(q_1 \): source charge
- \(\vec{E} \): field by \(q_1 \)
- \(q_2 \): test charge
- \(\vec{F} = q_2 \vec{E} \) force on \(q_2 \) by \(\vec{E} \)
Visualization of Electric Field: Field Lines

- Use of field lines is a convenient way to visualize electric fields
- Simple rules for drawing field lines:
 - line direction: direction of E vector
 - line density: relative strength of E. (denser = larger)

Field Lines e.g.: Point-Like Charges

Magnitude \(E = k \frac{q}{r^2} \)

Example 2: Two Charged Particles

Each field line always starts from a +q and end at a -q (or \(\infty \))

Motion Of Charged Particle In The Electric Field

- Fundamental Formulas:
 - \(\mathbf{F} = q \mathbf{E} \)
 - \(\mathbf{a} = \frac{\mathbf{F}}{m} = \frac{q \mathbf{E}}{m} \)
 - \(\mathbf{v} = \mathbf{v}_i + \mathbf{a} t \)

- If initially rest (\(\mathbf{v}_i = 0 \)), then \(\mathbf{v} = \mathbf{a} t = \left(\frac{q \mathbf{E}}{m} \right) t \)
- Motion of +q: Same dir. as \(\mathbf{E} \)
- Motion of -q: Opposite dir. as \(\mathbf{E} \)

Exercise: An Electron in a Uniform E. Field

- Find out vertical displacement after the electron pass through a downward uniform electric field \(\mathbf{E} \)
- For an electron charge \(e \) and mass \(m \)
- Answer: \(dy = - \frac{1}{2} at^2 = - \frac{1}{2} \left(\frac{qF}{m} \right) t^2 \)

Exercise: Electric Forces Due to Two Charged Particles

- Find the electric force on \(q_3 \).