Physics 202, Lecture 27

Today’s Topics

- Wave Nature of Lights: Interference
- Light as Waves
- Double-Slit Interference
- Multi-Slit Interference
- Thin film interference

Light and Optics

- Nature of Light
 - Light as rays
 - Light as EM waves: f, \(\lambda \), \(\phi \), v, A, interference ...
 - Light as group of photons

- Optics: Physics of light
 - Geometric Optics: Treat light as rays
 → Ray approximation.
 - Wave Optics: Wave properties becomes important.
 Interferences, diffraction

Reminder: Light Waves

- Nature of Light:
 - Rays (classical), ➔ EM waves ➔ Photons ➔
 - Review: Electromagnetic plane waves
 \[E = E_{\text{max}} \sin(\omega t-kx+\phi), \quad B = B_{\text{max}} \sin(\omega t-kx+\phi), \quad E/B = c \]
 - As the E component and B component of an EM wave are 100% correlated, we can use just one of them to represent an EM wave.

Useful Math Formulas

- Small angle approximations:
 \(\sin \theta \sim \theta \), \(\tan \theta \sim \theta \), when \(\theta \sim 0 \)

- Long distance approximation: \(y \sim L^* \theta \), when \(L > y \)

- \(\cos(0) = 1, \cos\pi = -1, \cos2\pi = 1, ... \)
 \(\cos\pi/2 = \cos3/2\pi = \cos5/2\pi = 0, ... \)

Quick Review

- Superposition Principle (ch. 16).
 - when two waves, \(y_1(x,t) \) and \(y_2(x,t) \) meet, the resulting wave is the algebraic sum of the two waves: \(y(x,t) = y_1(x,t) + y_2(x,t) \)

- Intensity of an EM wave \(I = S/c = E_{\text{max}}^2 = B_{\text{max}}^2 \)

Interference of Light Waves

- When two light waves meet at certain location, the resulting effect is determined by the superposition (i.e., sum) of the two individual waves
 - e.g., Two light waves with same color and amplitude.
 \(E_1 = E_{\text{max}} \sin(\omega t-kx+\phi_1) = E_{\text{max}} \sin(\omega t+\phi_1) \)
 \(E_2 = E_{\text{max}} \sin(\omega t-kx+\phi_2) = E_{\text{max}} \sin(\omega t+\phi_2) \)
 - using trig ids
 \(E = E_1 + E_2 = 2E_{\text{max}} \cos(\Delta \phi/2) \sin(\omega t + \phi) \)
 - Resulting amplitude: \(E_{\text{max}} = 2E_0 \cos(\Delta \phi/2) \)
 - Constructive interference: \(\Delta \phi = 0, 2\pi, 4\pi, ... \) \(E_{\text{max}}^2 = (+/-)2E_0^2 \)
 - Destructive interference: \(\Delta \phi = \pi, 3\pi, 5\pi, ... \) \(E_{\text{max}} = 0 \)
 - It all depends on \(\Delta \phi \)!
 - If the intensity of each incoming light is 1, what is the resulting intensity when (1): constructive, (2): destructive?
Constructive and Destructive Interference

Resulting amplitude: \(E_{\text{max}} = 2E_0 \cos(\Delta \phi/2) \)

- **Constructive, \(\Delta \phi = 0, 2\pi, 4\pi, \ldots \)**
 - Intensity: \(I \propto E_{\text{max}}^2 = B_{\text{max}}^2, \ 4I \)

- **Destructive, \(\Delta \phi = \pi, 3\pi, 5\pi, \ldots \)**

Test of the Wave Nature of Light: Double-Slit Experiment

- **Rays or Waves?**
 - Diffraction & interference

- **If lights behave as rays:**
 - Diffraction bending or waves around corners when a portion of the wave is cut off by a barrier

- **If lights behave as waves:**
 - Constructive, \(\Delta \phi = 0, \pi, 2\pi, 3\pi, \ldots \)
 - Destructive, \(\Delta \phi = \pi, 2\pi, 3\pi, \ldots \)

Young’s Famous Double-Slit Experiment

Thomas Young (1803)

Double-Slit Experiment Explained

- **The experiment can be easily explained by interference**

- **Constructive, \(\Delta \phi = 0, 2\pi, 4\pi, \ldots \)**
 - Bright spots: \(y = mL \lambda /d \)
 - Dark spots: \(y = (m+1/2)L \lambda /d \)

- **Destructive, \(\Delta \phi = \pi, 3\pi, 5\pi, \ldots \)**
 - Bright spots: \(y = mL \lambda /d \)
 - Dark spots: \(y = (m+1/2)L \lambda /d \)

Quantitatively

- **Path length difference:** \(\delta = dsin \theta = d \lambda \sin \theta /L \)

- **\(\Delta \phi = \frac{2\pi}{\lambda} (r_2 - r_1) = \frac{2\pi d}{\lambda} \sin \theta, k = \frac{2\pi}{\lambda} \)**

- **Intensity:** \(I = I_0 \cos^2 \left(\frac{\pi d \sin \theta}{\lambda} \right) \)

Minima and Maxima

- **Constructive:** \(\Delta \phi = 0, \pi, 2\pi, \ldots, \text{ or } 2m\pi, m=0,1,2,\ldots \)
 - Bright spots: \(y = mL \lambda /d \)
 - Dark spots: \(y = (m+1/2)L \lambda /d \)

- **Destructive:** \(\Delta \phi = \pi, 3\pi, 5\pi, \ldots, \text{ or } (2m+1)\pi, m=0,1,2,\ldots \)

- **Path length difference:** \(\delta = dsin \theta = d \lambda \sin \theta /L \)

- **Intensity:** \(I = I_0 \cos^2 \left(\frac{\pi d \sin \theta}{\lambda} \right) \)
Multi-Slit Interference

- # secondary maxima = N - 2
- Higher N → more suppression on secondary minima
 (Grating: N>1000, highly sensitive to λ, good for measuring λ).

\[Y_N = mL/\lambda - d \]

Minimum d gives largest maximum. 2d separated slits will contribute when m=2, 3d when m=3.

Photon interference?

- Do an interference experiment again.
- But turn down the intensity until only ONE photon at a time is between slits and screen.
- Is there still interference?

Possible Phase Change of 180°

- For Reflected Light
 - When a light traveling in medium 1 of \(n_1 \) is reaches at a boundary with medium 2 of \(n_2 \):
 - The reflected light has a 180°(π) phase shift if \(n_1 < n_2 \)
 - There is no phase change for reflected light if \(n_1 > n_2 \)
 - In any case, no phase shift for refracted light

Thin Film Interference

- Thin film splits light → split lights then interfere
- Phase change \(\pi \)
- \(\Delta \phi_{12} \approx (2\pi\lambda/n)(2t) + \pi \)
- \(\Delta \phi_{34} \approx 2\pi\lambda/n(2t) \)