Physics 202, Lecture 20

Today’s Topics

- Power in RLC
- Resonance in RLC
- Wave Motion (Review ch. 15)
 - General Wave
 - Transverse and Longitudinal Waves
 - Wave Function
 - Wave Speed
 - Sinusoidal Waves
 - Wave and Energy Transmission

Impedance

- For general circuit configuration:
 \[\Delta V = \Delta V_{\text{max}} \sin(\omega t + \phi) \]
 \[Z = \text{impedance}. \]

 e.g. RLC circuit:
 \[Z = \sqrt{R^2 + (X_L - X_C)^2} \]

- In general impedance is a complex number, \(Z = Z e^{i \phi} \).
- (the above result is specific to a RLC series circuit)
- The impedance in series and parallel circuits follows the same rule as resistors.

 \[Z = Z_1 + Z_2 + Z_3 + \ldots \quad \text{(in series)} \]
 \[\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + \ldots \quad \text{(in parallel)} \]

 (All impedances here can be complex numbers)

Summary of Impedances and Phases of series circuits

Comparison Between Impedance and Resistance

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Resistance</th>
<th>Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>Impedance</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Impedance</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Impedance</td>
<td></td>
</tr>
</tbody>
</table>

Application: Circuits with only R

- Real
- Complex: \(Z = |Z| e^{i \phi} \)

I vs. \(\Delta V \) Relationship:

- \(\Delta V = IR \)
- \(\Delta V = HZ \)
- \(\Delta V = \text{impedance} \)

In Series:

- \(R + R_1 + R_2 + \ldots \)
- \(Z + Z_1 + Z_2 + \ldots \)

In Parallel:

- \(1/R + 1/R_1 + 1/R_2 + \ldots \)
- \(1/Z + 1/Z_1 + 1/Z_2 + \ldots \)

Resonances In Series RLC Circuit

- The impedance of an AC circuit is a function of \(\omega \).
- e.g Series RLC:
 \[Z = \sqrt{R^2 + (X_L - X_C)^2} \]
 \[= \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C} \right)^2} \]

 - when \(\omega = \omega_0 \)
 - \[I = \frac{1}{\sqrt{L C}} \] (i.e. \(X_L = X_C \))
 - lowest impedance \(\rightarrow \) largest current \(\rightarrow \) resonance
 - Same as the phase of LC circuit in harmonic oscillation

- For a general AC circuit, at resonance:
 - Impedance is at lowest
 - Phase angle is zero (I is "in phase" with \(\Delta V \))
 - \(I_{\text{max}} \) is at highest
 - Power consumption is at highest

Power in AC Circuit

- Power in a circuit: \(P(t) = i(t) \Delta V(t) \) true for any circuit, AC or DC
- In an AC circuit, current and voltage on any component can be written in general:
 - \(\Delta V(t) = \Delta V_{\text{max}} \sin(\omega t + \phi) \)
 - \(i(t) = I_{\text{max}} \sin(\omega t) \)
- \(P(t) = I_{\text{max}} \sin(\omega t) \times \Delta V_{\text{max}} \sin(\omega t + \phi) \) \(\xrightarrow{\text{Power Factor}} \) \(\frac{1}{2} I_{\text{max}} \Delta V_{\text{max}} \)
- For resistor: \(\phi = 0 \)
- For inductor: \(\phi = \frac{\pi}{2} \)
- For capacitor: \(\phi = -\frac{\pi}{2} \)
- For an AC circuit at resonance:
 - \(\text{Power Factor} = 1 \)
- Widely used definitions:
 - \(\Delta V = \Delta V_{\text{max}} \)
 - \(I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}} \)

General Waves (Review of Ch. 15)

- Wave: Propagation of a physical quantity in space over time
 - \(q = q(x, t) \)
- Examples of waves:
 - Water wave, wave on string, sound wave, earthquake wave, electromagnetic wave, "light", quantum wave...
- Waves can be transverse or longitudinal.

Example wave: Stretched Rope

- It is a transverse wave
- The wave speed is determined by the tension and the linear density of the rope:
 - \(\nu = \sqrt{\frac{T}{\mu}} \)
 - \(\mu = \frac{\Delta m}{\Delta l} \)

Seismic Waves

- Longitudinal
- Transverse

Electro-Magnetic Waves are Transverse

- A changing magnetic field can cause an electric field (this electric field was the source of the Induced EMF)
- A changing electric field also cause an magnetic field (next chapter)

Wave Function

- Waves are described by wave functions in the form:
 - \(y(x,t) = f(x-\nu t) \)
- \(\nu \): A certain physical quantity (e.g. displacement in y direction or electric and magnetic fields)
- \(f \): Can be any form
- \(t \): time. Its coefficient \(\nu \) is the wave speed
 - \(\nu > 0 \) moving right
 - \(\nu < 0 \) moving left
- \(x \): space position
 - Coefficient arranged to be 1
Practical Technique: Identify Wave Speed in A Wave Function

- A wave function is in the form:
 \[y(x,t) = \frac{2}{(x - 3.0t)^2 + 1} \]
- The wave speed:
 - 3.0 m/s to the right
- Illustrate wave form at \(t = 0s, 1s, 2s \)

Sinusoidal Wave: Fixed X

- A wave describe a function \(y = \sin(kx - \omega t + \phi) \) is called sinusoidal wave. (Harmonic wave)
- The wave speed: \(v = \omega / k \)
- At each fixed position x,
 - Amplitude: \(|A| \)
 - Frequency: \(f = \omega / 2\pi \)
 - Angular frequency: \(\omega \)
 - Phase constant: \(-kx - \phi \)

Sinusoidal Wave: Fixed T

- Wave: \(y = \sin(kx - \omega t + \phi) \)
- Snapshot with fixed t:
 - Amplitude: \(|A| \)
 - Wave length: \(\lambda = 2\pi / k \)
- Wave Speed \(v = \omega / k \)
 - \(v = \lambda f \), or
 - \(v = \lambda / T \)

Waves Transfer Energy

- As motion in propagating in the form of wave in a medium, energy is transmitted.
- It can be shown that the rate of energy transfer by a sinusoidal wave on a rope is:
 \[P = \frac{1}{2} \mu A^2 \omega^2 v \]
- Note: power dependence on \(A, \omega, v \)
- We'll find that EM waves can transfer energy also!

Linear Wave Equation

- Linear wave equation
 - certain physical quantity
 \[\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} \]
- Wave speed
- General wave: superposition of sinusoidal waves
 - EM waves will obey such a wave equation.
 - Time changing current \(\to \) Time changing Magnetic field \(\to \)
 - Time changing Electric field \((dE/dt) \to \)
 - Time changing Magnetic Field \((dB/dt) \to \)

Sinusoidal wave

- \(f: \) frequency
- \(\phi: \) Phase
- \(v = \lambda f \)
- \(k = 2\pi / \lambda \)
- \(\omega = 2\pi f \)