Physics 202, Lecture 14

Today’s Topics

- Sources of the Magnetic Field (Ch 27)
 - Review: The Ampere’s Law
 - Applications And Exercises of ampere’s Law
 - Straight line, Solenoid, Toroid

- Magnetism in Matter
Review: Ampere’s Law

- Ampere’s Law:
 \[\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I \]
 for any closed path

- It applies to any closed path
- It applies to any static B field
- It is practically useful in symmetric cases

- Ampere’s Law can be derived from Biot-Savart Law
 - Key point: Derivation relies on the fact that the current has no divergence (is a continuous flow does not increase or decrease at any point). This works for current loops or infinite currents.
Solenoid

- The B field inside an ideal solenoid:
 - Ideal: Infinitely long and tightly wound

\[\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I \]

\[B_l = \mu_0 NI \]

\[B = \mu_0 nI \]

\(n = N/L \)

B field independent of where you are inside the solenoid
The B field inside an ideal solenoid is:

\[B = \mu_0 n I \]

where \(n = \frac{N}{L} \)
Compare Solenoid and Bar Magnet

Loose Solenoid

Tight Solenoid

Bar Magnet
The B field inside a toroid

\[\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I \quad \text{any closed path} \]

\[B2\pi r = \mu_0 NI \]

\[B = \frac{\mu_0 NI}{2\pi r} \]

b\(<r\<c: B=0 \text{ outside the Torus because the Ampere’s loop does not enclose any net current} \]
Electric dipole moment \mathbf{p}. Dielectric material contains electric dipoles at atomic level.

In an external field E_0, the dipoles line up E_{ind} is always opposite to E_0.

$\sum \mathbf{F} = 0$

$\vec{\tau} = \mathbf{p} \times \mathbf{E}$

$U = -\mathbf{p} \cdot \mathbf{E}$

$E = E_0 / \kappa < E_0$, $C = \kappa C_0$

(dielectric constant $\kappa > 1$)
More on Magnetic Dipole Moments

Magnetic dipole moment μ.

Note: B produced (at the center) is always in the same direction as μ.

definition of magnetic moment

Macroscopic

$\mu = I A$

Microscopic

From orbiting electrons (depends on their angular momentum) and quantum mechanical spin (special type of angular momentum)

$I = q/T = qv/2\pi r$

$\mu = I A = 1/2 qvr = (q/2m)L$

$B_{z=\infty} = \frac{\mu_0 I R^2}{2 |z|^3}$

$B = \frac{\mu_0 \mu}{2 |z|^3}$
Magnetism in Matter

- Total magnetic dipole moment μ and the magnetic field
 - If all the individual dipoles line up, the field can be very strong. Induced by applying an external field
 - Configuration like a solenoid with constant field
 - Depends on details of the material.
- Define the magnetization M where $B_{\text{ind}} = \mu_0 M$

\[\sum F = 0 \]
\[\vec{\tau} = \vec{\mu} \times \vec{B} \]
\[U = -\vec{\mu} \cdot \vec{B} \]
Magnetism in Matter

- Induced field B_{ind} in response to an external B_0: $B_{\text{ind}} = \chi B_0$
- the net field inside: $B = B_0 + B_{\text{ind}} = (1 + \chi) B_0 = (\mu_m/\mu_0)B_0 = K_m B_0$

μ_m: magnetic permeability, χ: magnetic susceptibility,
K: relative permeability

<table>
<thead>
<tr>
<th>Classification of Magnetic Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Ferromagnetic (e.g. Fe, Co, Ni...)</td>
</tr>
<tr>
<td>Paramagnetic (e.g. Al, Ca,...)</td>
</tr>
<tr>
<td>Diamagnetic (e.g. Cu, Au,...)</td>
</tr>
<tr>
<td>Superconductor</td>
</tr>
</tbody>
</table>
Permanent Magnetic Moments (domains)
Inside Ferromagnetic Material

No external B field,
permanent mag. moments exist, but oriented randomly
\rightarrow no induced B field

B_0 applied, permanent magnetic moments line up in the direction of B_0
\rightarrow strong induced B field

Note: Inductance with a ferromagnetic core: $B = \frac{\mu_m}{\mu_0}B_0 \gg B_0$
Meissner Effect

- Certain superconductors (type I) exhibit perfect diamagnetism in superconducting state: no magnetic field allowed inside (Meissner Effect)