1. Nuclear (Strong) Force holds nucleons together - protons and neutrons.
 - Short range \(\sim 10^{-15} \) m
 - Electric force larger \(> 10^{-15} \) m "Coulomb Barrier"

 Isotope nomenclature \(^{238}U \):
 - mass number = \# nucleons
 - atomic number = \# protons

 Alpha decay ex. \(^{238}U \rightarrow ^{234}Th + ^{4}He + \text{energy} \)

 Beta decay ex. \(^{14}C \rightarrow ^{14}N + e^- + \bar{\nu}_e + \text{energy} \)

 Gamma decay ex. \(^{137}Cs \rightarrow ^{137}Ba^* + e^- + \bar{\nu}_e + \text{energy} \)
 \(^{137}Ba + \gamma (0.662 \text{ MeV}) \)

2. Radioactive decay is random process due to probability nature of quantum wave mechanics.
 - Half-life \(T_{1/2} \) = length of time for 50\% probability of decay
 - \(T_{1/2} = \) length of time for 50\% to decay

 Shorter half life \(\rightarrow \) more "radioactive"
 - More mass \(\rightarrow \) more radio emission

 ex. \(^{14}C \quad T_{1/2} = 5,730 \text{ y} \times 6,000 \text{ y} \) (\(\beta \))
 \(^{3}H \quad T_{1/2} = 12 \text{ y} \) (\(\beta \))
 \(^{226}Ra \quad T_{1/2} = 1600 \text{ y} \) (\(\alpha \))
Radiation unit: 1 Curie = 1 Ci = 3.7×10^{10} decays/sec
(1 g of 226Ra, tribute to Curies)

Four natural decay series, e.g. 238U ("Radium") Series:

238U \rightarrow 234Th \rightarrow 230Th \rightarrow 226Rb \rightarrow 208Pb stable

Carbon dating, medical labeling, tracing, etc.

Ionizing Radiation = α, β, γ tendency to ionize material

\Rightarrow health risk
\Rightarrow detectors e.g. cloud chamber

3. Weak Interaction

- fourth and final "force"
- very short range $\sim 10^{-18}$ m
- unified with EM in 1968: "electroweak"

(1) Beta decay $n \rightarrow p + e^- + \bar{\nu}_e$, etc.

(2) Solar fusion $p + p \rightarrow D + e^+ + \nu_e$

net: $6p + 2e^- \rightarrow ^4He + 2p + 26.7$ MeV

Slow process \Rightarrow Sun lasts 10 billion years

Nuclear Binding Energy

- light nuclei fuse to release energy
- heavy nuclei fission to release energy
Fission:
\[{}^{238}U + n \rightarrow {}^{239}U \rightarrow {}^{92}Kr + 141 \text{I} + 3n \]

0.7% of natural uranium

\[{}^{95}Sr + {}^{139}Xe + 2n \]

Can manufacture other fissionable isotope \({}^{239}Pu \):
\[{}^{238}U + n \rightarrow {}^{239}U \rightarrow {}^{239}N + e^- + \gamma \]
\[{}^{239}Pu + e^- + \gamma \rightarrow {}^{239}Pu \]

Only two isotopes

Fission naturally!

(And only \({}^{235}U \) occurs in nature)

Critical Mass = mass of sphere that experiences chain reaction from product neutrons producing more fission before escape

\({}^{235}U \): 25 kg
\({}^{239}Pu \): 8 kg

\[\Rightarrow \text{Fission bomb: slam critical mass together first} \]

\[\Rightarrow \text{Fusion bomb: slam D-T together, then fission} {}^{238}U \text{ with fast 14 MeV fusion neutrons} \]

WWII

"Little Boy" - \({}^{235}U \), Hiroshima (untested "gun" style)

"The Gadget" - \({}^{239}Pu \), Trinity test (implosion style)

"Fat Boy" - \({}^{239}Pu \), Nagasaki (based on The Gadget)

"Manhattan Project" = US nuclear weapons program at Los Alamos during war

- continued to Cold War and nuclear escalation
4. QCD + Standard Model

Most "mass" is field energy

Natural matter is composed of u,d quarks and electrons:

\[\text{U-quark: } u, c, t \]
\[\text{D-quark: } d, s, b \]

"Generation I"
\[p = uud \text{ 928.7 MeV from field energy} \]
\[n = udd \text{ 977.6 MeV} \]

Three forces (not gravity) mediated by "gauge bosons":

EM: γ, strong: g, weak: Z^0, W^\pm

5. Feynman Diagrams = powerful graphical tool to study particle interactions

\[e^+ e^- \text{ scattering} \]
\[e^+ e^- \text{ annihilation} \]
\[e^+ e^- \text{ meson production} \]
\[\pi^+ = u\bar{d} \]
\[\pi^- = d\bar{u} \]
\[\pi^0 = u\bar{u} \]

new particles like pions

6. Leptons

\[e, \mu, \tau \]
\[\nu_e, \nu_\mu, \nu_\tau \]

Standard Model

Particles + Fields

Higgs Boson = determines masses??

Need high energy = Large Hadron Collider at CERN