Physics 209, Lecture 9

Today's Topics

- Current And Resistance (Ch. 27)
- Motion of Charged Particle In Electric Field (review)
- Current: Macroscopic and Microscopic Views
- Resistance: Macroscopic and Microscopic Views
- Electrical Power

- Expected from Preview:
 - Current, current density, drift velocity, Ohm, Ampere, power, ...

Motion Of Charged Particle
In The Electric Field

Fundamental Formulas:

- \(F = qE \)
- \(a = \frac{F}{m} = \frac{qE}{m} \)
- \(v = v_i + at \) if \(v_i = 0 \), then \(v = at \)

A Picture to remember

Motion of \(+q \):
- From high \(V \) to low \(V \)
- Same dir. as \(E \)

Motion of \(-q \):
- From low \(V \) to high \(V \)
- Opposite dir. as \(E \)

Charge Motion in a Conductor

- Without electric field:
 - electrons move randomly (thermal motion) \(|v_{av}| = 0 \), \(|v| > 0 \)

- With electric field applied:
 - electron motion = thermal + drift (directional): \(|v_{av}| = v_{av} > 0 \), \(|v| > 0 \)
 - i.e. a net charge \(\Delta Q \) is moving directionally

- Average current: \(I = \frac{\Delta Q}{\Delta t} \)
- Instantaneous current: \(I = \frac{dQ}{dt} \)

Current: Macroscopic View

- Definition: \(I = \frac{dQ}{dt} \)
- Unit: 1 Ampere = 1 Coulomb/1 sec
- Current is directional: Follows positive charge
- Equivalence Principle:
 - \(+q \) moving in \(+x \) direction \(\leftrightarrow \) \(-q \) in moving \(-x \) direction
 - The following pictures represent the same current

- Charge conservation \(\rightarrow \) Current conservation

If initially at rest
- Motion of \(+q \):
 - Same dir. as \(E \)

- Motion of \(-q \):
 - Opposite dir. as \(E \)

From high \(V \) to low \(V \)

From low \(V \) to high \(V \)
Current: Microscopic View

- Current \leftrightarrow motion of charged particles
- $I = \int_{S} n \cdot q \cdot v \cdot dA$
- v_d: average drift velocity
- n: number density
- η: density of charge carriers
- q: charge
- τ: relaxation time

Show that: $I_{av} = \frac{\Delta Q}{\Delta t} = \eta q v_d A = I$

Current density $J = I / A = n q v_d$ (vector)

Note: $v_d \propto E$ (why?)

Ohm’s Law: Resistance

- It can be shown experimentally and theoretically that for many materials, the electric current is proportional to ΔV:
 $I \propto V$

- For a fixed material and geometry:
 $I = \frac{V}{R}$ or $V = RI$

R: resistance

Conductivity And Resistance

- Ohm’s Law (microscopic): $J = \sigma E$
 - σ is called conductivity
 - Also: $\rho = 1/\sigma$ is called resistivity
- Ohm’s Law (macroscopic): $\Delta V = RI$
- R: Resistance. Unit: Ohm ($\Omega = \text{Volt/Ampere}$)

- Exercise: relate R to ρ

Resistivity For Various Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistivity ($\Omega \cdot \text{m}$)</th>
<th>Temperature Coefficient ($% / \degree C$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>1.3×10^{-6}</td>
<td>-0.4×10^{-4}</td>
</tr>
<tr>
<td>Cu</td>
<td>1.7×10^{-8}</td>
<td>0.0×10^{-4}</td>
</tr>
<tr>
<td>Sn</td>
<td>9.0×10^{-7}</td>
<td>-0.6×10^{-4}</td>
</tr>
<tr>
<td>Pt</td>
<td>1.0×10^{-6}</td>
<td>-0.1×10^{-4}</td>
</tr>
<tr>
<td>Ta</td>
<td>1.4×10^{-6}</td>
<td>-0.2×10^{-4}</td>
</tr>
<tr>
<td>C</td>
<td>1.5×10^{-6}</td>
<td>-0.3×10^{-4}</td>
</tr>
<tr>
<td>Al2O3</td>
<td>1.0×10^{-4}</td>
<td>-0.4×10^{-4}</td>
</tr>
</tbody>
</table>

- ρ_{o} is the intrinsic resistivity
- ρ_{e} is the extrinsic resistivity
- ρ_{m} is the mixture resistivity
- $\rho_{e} \approx \rho_{o}$

Resistors

$R = \frac{\rho \ell}{A}$

Resistors

- Resistors are used to control the flow of current in a circuit.
- They are used in various applications such as heaters, relays, and dimmers.
- Resistors are classified into two types:
 - Fixed resistors
 - Variable resistors

- Fixed resistors are made of materials with a constant resistivity.
- Variable resistors can be adjusted to change their resistance.

- Resistors are also classified by their color code.
- The color code is a system of stripes and bars that indicate the resistance value.

- Resistors are used to protect electronic components from damage.
- They are used to limit the current flow in a circuit.

- Resistors are used to divide voltage.
- They are used to change the current flow in a circuit.

- Resistors are used to control the power supply.
- They are used to limit the current flow in a circuit.

- Resistors are used to control the power supply.
- They are used to limit the current flow in a circuit.
Resistance And Temperature

- Resistivity is usually temperature dependent.

![Graph showing resistivity vs temperature for Normal Metal, Semiconductor, and Superconductor](image)

Normal Metal
(See demo)

Ohmic and non-Ohmic Materials

- Ohmic:
 - Linear I-V relationship

- non-Ohmic:
 - Non-linear I-V

For the rest of the course, we assume ohmic for all materials

Superconductivity

- Superconductors: temperature $T < T_C$, resistivity $\rho = 0$
 - Super conductivity is a quantum phenomenon.
 - Super conductors have special electric and magnetic features

![Graph showing superconductivity](image)

Electrical Power

- Electric Power:
 - For resistors (ohmic):
 \[P = I^2R = \frac{(\Delta V)^2}{R} \]
 - Power unit: watts (W=WJ/s)
 - Energy unit: kWh
 - 1 kWh = 3.6 MJ

![Graph showing electrical power](image)

Table 27.5

<table>
<thead>
<tr>
<th>Material</th>
<th>T_C (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Tc Bi2212</td>
<td>135</td>
</tr>
<tr>
<td>HiBaCaCu2O8</td>
<td>125</td>
</tr>
<tr>
<td>Bi-2212</td>
<td>105</td>
</tr>
<tr>
<td>YBaCu3O7</td>
<td>92</td>
</tr>
<tr>
<td>NbSe2</td>
<td>25.5</td>
</tr>
<tr>
<td>NbSe</td>
<td>18.05</td>
</tr>
<tr>
<td>Nb</td>
<td>9.46</td>
</tr>
<tr>
<td>Pd</td>
<td>2.15</td>
</tr>
<tr>
<td>Hg</td>
<td>4.13</td>
</tr>
<tr>
<td>Sn</td>
<td>3.72</td>
</tr>
<tr>
<td>Al</td>
<td>1.19</td>
</tr>
</tbody>
</table>
Example: Battery Connected To A Resistor

- Show the energy flow of this battery-resistor set-up
 - Chemical Process \rightarrow $\Delta V = 1.5V$
 - ΔV on Resistor \rightarrow Current $I = \Delta V/R$

- Charge flow through the resistor in Δt
 - $Q = I \Delta t = \Delta V/R \Delta t$

- Electrical potential energy released:
 - $U = Q \Delta V = \Delta V^2/R \Delta t$

- Power: $P = U/\Delta t = (\Delta V)^2/R$

Energy Flow: Chemical \rightarrow Electrical U \rightarrow K_e \rightarrow thermal/light

Demo/ Quiz 1: Consumption of Electric Power On Resistors

- A voltage is applied to a wire of length L. When L increases, does power consumed increase or decrease?
 1. Increases
 2. Decreases
 3. Same

Demo/ Quiz 2: Consumption of Electric Power On Resistors

- When a current passes through a wire made of copper and nichrome, which metal: copper or nichrome, consumes more energy?
 ($\rho_{Cu} \sim 10^{-8} \, \Omega m, \rho_{Ni} \sim 10^{-6} \, \Omega m$, All segments have about the same length and diameter.)
 1. Copper
 2. Nichrome
 3. Same

I \rightarrow Cu Ni Cu Ni