Today's Topics
- Faraday's Law (Ch 31)
- Review Lenz's Law
- Demos
- Faraday's Law Explained
- Motional Emf
- Expected Preview: Ch 31

Review: Faraday's Law of Induction
- The emf induced in a “circuit” is proportional to the time rate of change of magnetic flux through the “circuit”.

\[\mathcal{E} = -\frac{d\Phi_B}{dt} \]

- Notes:
 - “Circuit”: any closed path
 - does not have to be real conducting circuit
 - The path/circuit does not have to be circular, or even planar

Review: Direction of Induced emf
- \(\mathcal{E} > 0 \), same as nominal direction
- \(\mathcal{E} < 0 \), opposite
- Note that the nominal direction of \(\mathcal{E} \) and the direction of vector A follows right hand rule

Review: Lenz's Law
- Lenz’s law in plain words: the induced emf always tends to work against the original cause of flux change

<table>
<thead>
<tr>
<th>Cause of (d\Phi_B/dt)</th>
<th>“Current” due to Induced (\mathcal{E}) will:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing B</td>
<td>generate B in opposite dir.</td>
</tr>
<tr>
<td>Decreasing B</td>
<td>generate B in same dir.</td>
</tr>
<tr>
<td>Relative motion</td>
<td>subject to a force in opposite direction of relative motions</td>
</tr>
</tbody>
</table>

Note: “Current” may not actually produced if no circuit
Examples of Lenz’s Law

Demo: Eddy Current

Demo: Guillotine Machine

Let's see how a Physicist (me) would do it.

Methods to Change Electric Flux

\[E = -\frac{d\Phi_B}{dt} \quad \text{uniform} \quad B \]

- Change of \(\Phi_B \) → emf
- To change \(\Phi_B \):
 - Change \(B \) → emf produced by an induced E field
 - Change \(A \) → motional emf
 - Change \(\theta \) → motional emf
 - Combination of above
Lenz Law for Moving Rod in B Field

- In the setting below, a magnetic force is acting against the motion of the moving rod. No matter which direction it moves.

 \[\text{Use Lenz Law to explain it.} \]

Motional emf of a Sliding Bar

- When the conducting bar is moving, the electrons inside is subject to a magnetic force:
 - Show that for the motion below, electrons are subject a force downwards.
 - Show the magnitude of the force is evB per electron.

- Now electrons are moving downwards and accumulate at the lower end of the bar.

 \[\text{This would create an electric field } E \text{ in direction shown.} \]
 \[\text{The electric field } E \text{ applies an upward force } F_E = eE. \]
 \[\text{When balance } F_E = F_B \rightarrow E = evB. \]

 \[\text{The voltage (emf) is } \varepsilon = vLB. \]

Moving Rod Again

- When forming a closed circuit, the induced emf drives a current in the rod in direction as shown.

 \[\text{Exercise: use } F_B = ILXB \text{ to verify the direction of } F_B \text{ as shown.} \]

Use Faraday's Law to Calculate Motional emf

- Faraday's Law: $\varepsilon = -\frac{d\Phi}{dt}$, $\Phi = BA$, $A = \pi r^2$

\[\rightarrow \frac{d\Phi}{dt} = B \frac{dx}{dt} = B\nu = |\varepsilon| \]
What Produces emf? Induced Electric Field

- Whenever a magnetic field varies in time, an electric field is induced.

Notes:
- Induced E is not a conservative field.
- Induced E can exist in a location where no B field exists.
- Induced E is independent of circuit.