FIGURE 20.3 (a) Distribution of ranges for charged particles. (b) Probability of a particle having a range larger than R.

where α is called the **straggling parameter**. Since $p(R) \, dR$ is the probability that the range will be within an interval dR about R, the probability $P(R)$ that a particle will have a range larger than R can be found by integrating the above distribution:

$$P(R) = \int_{R}^{\infty} p(R') \, dR'$$ \hspace{1cm} (17)

This is plotted as a function of R in Figure 20.3b. As expected, $P(R)$ dips to $\frac{1}{2}$ at $R = R_0$. This curve, unlike the one for $p(R)$, is easy to obtain experimentally by noting the number of particles reaching a detector as the distance from a reference point is increased. In addition to R_0, the **extrapolated range** R_{ex} is often measured from the $P(R)$ curve by finding the intersection with the abscissa of a line tangent to $P(R)$ at $R = R_0$, as is illustrated in Figure 20.3b. The quantity $R_{ex} - R_0$ is directly related to the straggling parameter:

$$R_{ex} - R_0 = \frac{P(R_0)}{-dP/dR} = \frac{\sqrt{\pi}}{2\alpha} \hspace{1cm} (m)$$ \hspace{1cm} (18)

where the derivative dP/dR is evaluated at $R = R_0$. For α particles in air, for example, this amounts to about 1 percent of R_0.

EXERCISE 2

Verify the relationship between R_{ex}, R_0, and α given above by equation 18.

If the particle source has nonnegligible thickness, particles emitted from different locations within the source will have different ranges; the $P(R)$ curve in Figure 20.3b will thus be modified accordingly. The true mean range R_0 for particles emitted from such a source is no longer the same as $R_{1/2}$, which is the measured half-intensity distance. R_0 may still be calculated from a measurement of R_{ex} and $R_{1/2}$; the technique is described concisely in reference 2, page 282.

EXERCISE 3

Indicate qualitatively, by means of a rough sketch, how Figure 20.3b would be modified for a source of nonnegligible thickness.

Measurements of the range and stopping power for charged particles emitted from radioactive sources may be accomplished either with a **surface barrier detector** in conjunction with a pulse analysis system or with an ionization chamber and an electrometer. In