Theory Uncertainties in Higgs Searches Using Exclusive Jet Bins

Frank Tackmann
Massachusetts Institute of Technology

EWSB Workshop
Madison, May 7, 2011

based on work with
Iain Stewart, Wouter Waalewijn, Carola Berger, Claudio Marcantonini
Outline

1. Introduction
2. Counting Jets at Fixed Order
3. Resummation at NNLL+NNLO
4. More Jets
5. Summary
Introduction

Counting Jets at Fixed Order

Resummation at NNLL+NNLO

More Jets

Summary
Exclusive Jet Measurements

We are often interested in differential (exclusive) jet measurements

- Backgrounds vary with the number of jets

⇒ Be exclusive in the number of jets
 - \(pp \rightarrow H(\rightarrow WW^*) + 0, 1, 2 \text{ jets} \)
 - Also relevant for \(H \rightarrow \gamma\gamma \)

⇒ The “spectrum” of jets is also important for theory uncertainties

Other ways of being exclusive

- Jet mass and shape (e.g. distinguish quark and gluon jets)
- Jet substructure, e.g. to search for \(H \rightarrow b\bar{b} \)
- Photon and lepton isolation cuts, e.g. \(H \rightarrow \gamma\gamma \)
$H \rightarrow WW$ vs. $tt \rightarrow WWbb$

1

⇒ Veto events with central jets, measure $pp \rightarrow H(\rightarrow WW) + 0$ jets
How to Veto Central Jets

Conventional: Jet algorithm

- Search for jets and require $p^\text{jet}_T < p^\text{cut}_T$
 - Tevatron: $p^\text{cut}_T \simeq 20$ GeV
 - LHC: $p^\text{cut}_T \simeq 25$ GeV

⇒ Complicated phase-space restrictions
How to Veto Central Jets

Conventional: Jet algorithm

- Search for jets and require $p_T^{\text{jet}} < p_T^{\text{cut}}$
 - Tevatron: $p_T^{\text{cut}} \simeq 20 \text{ GeV}$
 - LHC: $p_T^{\text{cut}} \simeq 25 \text{ GeV}$

⇒ Complicated phase-space restrictions

Alternative: Event shape

- Measure “beam thrust” of each event

$$\mathcal{T}_{\text{cm}} = \sum_k |\vec{p}_{kT}| e^{-|\eta_k|} = \sum_k (E_k - |p_{kz}|)$$

and require $\mathcal{T}_{\text{cm}} < \mathcal{T}^{\text{cut}}$

⇒ Better suited to analytic calculations
Large Logarithms from Jet Veto

Even if hard signal process \(gg \rightarrow H \) contains no jets, jet veto affects cross section by restricting ISR

\[\Rightarrow \ t\text{-channel singularities produce Sudakov double logarithms} \]

\[
\sigma(p_T^{\text{cut}}) \propto 1 - \frac{3\alpha_s}{\pi} \ln^2 \frac{p_T^{\text{cut}}}{m_H} + \ldots
\]

\[
\sigma(T^{\text{cut}}) \propto 1 - \frac{3\alpha_s}{\pi} \ln^2 \frac{T^{\text{cut}}}{m_H} + \ldots
\]

- Large perturbative corrections at small cuts
- Are larger for \(p_T^{\text{cut}} \) than \(T^{\text{cut}} \), agree for \(T^{\text{cut}} \simeq m_H \left(\frac{p_T^{\text{cut}}}{m_H} \right)^{\sqrt{2}} \)
Perturbative Structure of Cross Section

\[L^2 = 2 \ln^2 \frac{p_T^{\text{cut}}}{m_H} \quad \text{or} \quad L^2 = \ln^2 \frac{T^{\text{cut}}}{m_H} \]

\[\sigma(p_T^{\text{cut}}) = 1 + \alpha_s L^2 + \alpha_s L + \alpha_s + \alpha_s n_1(p_T^{\text{cut}}) \quad \text{NLO} \]
\[+ \alpha_s^2 L^4 + \alpha_s^2 L^3 + \alpha_s^2 L^2 + \alpha_s^2 L + \alpha_s^2 + \alpha_s^2 n_2(p_T^{\text{cut}}) \]
\[+ \alpha_s^3 L^6 + \alpha_s^3 L^5 + \alpha_s^3 L^4 + \alpha_s^3 L^3 + \alpha_s^3 L^2 + \alpha_s^3 L + \cdots \]
\[+ \vdots + \cdots \]

Inclusive cross section: \(p_T^{\text{cut}} \sim m_H \) so \(L \ll 1 \)

- Dominated by nonlogarithmic terms \(\alpha_i^s + \alpha_i^s n_i(p_T^{\text{cut}}) \)

⇒ Use fixed-order expansion: LO, NLO, NNLO
Perturbative Structure of Cross Section

\[L^2 = 2 \ln^2 \frac{p_T^{\text{cut}}}{m_H} \quad \text{or} \quad L^2 = \ln^2 \frac{T^{\text{cut}}}{m_H} \]

\[\sigma(p_T^{\text{cut}}) = 1 + \alpha_s L^2 + \alpha_s L + \alpha_s + \alpha_s n_1(p_T^{\text{cut}}) \quad \text{NLO} \]

\[+ \alpha_s^2 L^4 + \alpha_s^2 L^3 + \alpha_s^2 L^2 + \alpha_s^2 L + \alpha_s^2 + \alpha_s^2 n_2(p_T^{\text{cut}}) \quad \text{NNLO} \]

\[+ \alpha_s^3 L^6 + \alpha_s^3 L^5 + \alpha_s^3 L^4 + \alpha_s^3 L^3 + \alpha_s^3 L^2 + \alpha_s^3 L + \cdots \]

\[+ \vdots + \cdots \]

Inclusive cross section: \(p_T^{\text{cut}} \sim m_H \) so \(L \ll 1 \)

- Dominated by nonlogarithmic terms \(\alpha_s^i + \alpha_s^i n_i(p_T^{\text{cut}}) \)

\[\Rightarrow \quad \text{Use fixed-order expansion: LO, NLO, NNLO} \]
Perturbative Structure of Cross Section

\[\sigma(p_T^{\text{cut}}) = 1 \]
\[+ \alpha_s L^2 + \alpha_s L + \alpha_s + \alpha_s n_1(p_T^{\text{cut}}) \]
\[+ \alpha_s^2 L^4 + \alpha_s^2 L^3 + \alpha_s^2 L^2 + \alpha_s^2 L + \alpha_s^2 + \alpha_s^2 n_2(p_T^{\text{cut}}) \]
\[+ \alpha_s^3 L^6 + \alpha_s^3 L^5 + \alpha_s^3 L^4 + \alpha_s^3 L^3 + \alpha_s^3 L^2 + \alpha_s^3 L + \cdots \]
\[+ \vdots + \vdots + \vdots + \vdots + \vdots + \vdots + \cdots \]

LL

Inclusive cross section: \(p_T^{\text{cut}} \sim m_H \) so \(L \ll 1 \)
- Dominated by nonlogarithmic terms \(\alpha_s^i + \alpha_s^i n_i(p_T^{\text{cut}}) \)
⇒ Use fixed-order expansion: LO, NLO, NNLO

0-jet cross section: \(p_T^{\text{cut}} \ll m_H \) so \(L \gg 1 \)
- Dominated by logarithmic terms \(\alpha_s^i L^j, n_i(p_T^{\text{cut}}) \sim O(p_T^{\text{cut}}/m_H) \)
- Use resummed perturbation theory: LL, NLL, NNLL, N^3LL
Perturbative Structure of Cross Section

\[L^2 = 2 \ln^2 \frac{p_T^{\text{cut}}}{m_H} \quad \text{or} \quad L^2 = \ln^2 \frac{T^{\text{cut}}}{m_H} \]

\[\sigma(p_T^{\text{cut}}) = 1 + \alpha_s L^2 + \alpha_s L + \alpha_s + \alpha_s n_1(p_T^{\text{cut}}) \]

\[+ \alpha_s^2 L^4 + \alpha_s^2 L^3 + \alpha_s^2 L^2 + \alpha_s^2 L + \alpha_s^2 + \alpha_s^2 n_2(p_T^{\text{cut}}) \quad \text{NLO} \]

\[+ \alpha_s^3 L^6 + \alpha_s^3 L^5 + \alpha_s^3 L^4 + \alpha_s^3 L^3 + \alpha_s^3 L^2 + \alpha_s^3 L + \cdots \quad \text{NNLO} \]

\[+ \cdots \quad \text{LL, NLL} \]

Inclusive cross section: \(p_T^{\text{cut}} \sim m_H \) so \(L \ll 1 \)

- Dominated by nonlogarithmic terms \(\alpha_s^i + \alpha_s^i n_i(p_T^{\text{cut}}) \)

⇒ Use fixed-order expansion: LO, NLO, NNLO

0-jet cross section: \(p_T^{\text{cut}} \ll m_H \) so \(L \gtrsim 1 \)

- Dominated by logarithmic terms \(\alpha_s^i L^j, n_i(p_T^{\text{cut}}) \sim \mathcal{O}(p_T^{\text{cut}}/m_H) \)

- Use resummed perturbation theory: LL, NLL, NNLL, N^3LL
Perturbative Structure of Cross Section

\[\sigma(p_T^{\text{cut}}) = 1 \]

\[+ \alpha_s L^2 + \alpha_s L + \alpha_s + \alpha_s n_1(p_T^{\text{cut}}) \quad \text{NLO} \]

\[+ \alpha_s^2 L^4 + \alpha_s^2 L^3 + \alpha_s^2 L^2 + \alpha_s^2 L + \alpha_s^2 + \alpha_s^2 n_2(p_T^{\text{cut}}) \quad \text{NNLO} \]

\[+ \alpha_s^3 L^6 + \alpha_s^3 L^5 + \alpha_s^3 L^4 + \alpha_s^3 L^3 + \alpha_s^3 L^2 + \alpha_s^3 L + \cdots \]

LL NLL NNLL

Inclusive cross section: \(p_T^{\text{cut}} \sim m_H \) so \(L \ll 1 \)

- Dominated by nonlogarithmic terms \(\alpha_i^j + \alpha_i^j n_i(p_T^{\text{cut}}) \)

⇒ Use fixed-order expansion: LO, NLO, NNLO

0-jet cross section: \(p_T^{\text{cut}} \ll m_H \) so \(L \gtrsim 1 \)

- Dominated by logarithmic terms \(\alpha_s^i L^j, n_i(p_T^{\text{cut}}) \sim O(p_T^{\text{cut}}/m_H) \)

- Use resummed perturbation theory: LL, NLL, NNLL, N^3LL
Perturbative Structure of Cross Section

$$\sigma(p_T^{\text{cut}}) = 1$$

$$+ \alpha_s L^2 + \alpha_s L + \alpha_s + \alpha_s n_1(p_T^{\text{cut}})$$

$$+ \alpha_s^2 L^4 + \alpha_s^2 L^3 + \alpha_s^3 L^2 + \alpha_s^2 L + \alpha_s^2 + \alpha_s^2 n_2(p_T^{\text{cut}})$$

$$+ \alpha_s^3 L^6 + \alpha_s^3 L^5 + \alpha_s^3 L^4 + \alpha_s^3 L^3 + \alpha_s^3 L^2 + \alpha_s^3 L + \cdots$$

$$+ \vdots + \vdots + \vdots + \vdots + \vdots + \vdots + \cdots$$

LL, NLL, NNLL, N^3LL

Inclusive cross section: $$p_T^{\text{cut}} \sim m_H$$ so $$L \ll 1$$

- Dominated by nonlogarithmic terms $$\alpha_i^s + \alpha_i^s n_i(p_T^{\text{cut}})$$

⇒ Use fixed-order expansion: LO, NLO, NNLO

0-jet cross section: $$p_T^{\text{cut}} \ll m_H$$ so $$L \gtrsim 1$$

- Dominated by logarithmic terms $$\alpha_i^s L^j, n_i(p_T^{\text{cut}}) \sim \mathcal{O}(p_T^{\text{cut}}/m_H)$$

- Use resummed perturbation theory: LL, NLL, NNLL, N^3LL
Counting Jets at Fixed Order

Frank Tackmann (MIT)
Counting Jets at Fixed Order

Fully differential NNLO known numerically
[Anastasiou, Melnikov, Petriello; Grazzini]
- FO expansion gets unstable at small p_T^{cut} and eventually breaks down
- Naively, jet veto appears to improve convergence

Current recipe being used by experiments [Anastasiou et al., arXiv:0905.3529]
- Common scale variation for jet bins, e.g. for the Tevatron

$$\frac{\Delta \sigma}{\sigma} = 66.5\% \times \begin{pmatrix} +5\% \\ -9\% \end{pmatrix} + 28.6\% \times \begin{pmatrix} +24\% \\ -22\% \end{pmatrix} + 4.9\% \times \begin{pmatrix} +78\% \\ -41\% \end{pmatrix} = \begin{pmatrix} +14\% \\ -14\% \end{pmatrix}$$

0 jets 1 jet \geq 2 jets

Smaller uncertainty in 0-jet bin than in inclusive cross section
Perturbative Structure of Jet Cross Sections

\[\sigma_{\text{total}} = \int_0^{p_T^{\text{cut}}} d p_T \frac{d \sigma}{d p_T} + \int_{p_T^{\text{cut}}}^{\infty} d p_T \frac{d \sigma}{d p_T} \]

\[\sigma_0(p_T^{\text{cut}}) + \sigma_{\geq 1}(p_T^{\text{cut}}) \]

\[\sigma_{\text{total}} = 1 + \alpha_s + \alpha_s^2 + \cdots \]

\[\sigma_{\geq 1}(p_T^{\text{cut}}) = \alpha_s(L^2 + L) + \alpha_s^2(L^4 + L^3 + L^2 + L) + \cdots \]

\[\sigma_0(p_T^{\text{cut}}) = \sigma_{\text{total}} - \sigma_{\geq 1}(p_T^{\text{cut}}) \]

\[= [1 + \alpha_s + \alpha_s^2 + \cdots] - [\alpha_s(L^2 + L) + \alpha_s^2(L^4 + \cdots) + \cdots] \]

- Perturbative series in \(\sigma_{\text{total}} \) and \(\sigma_{\geq 1}(p_T^{\text{cut}}) \) have different structures and are unrelated
- Apparent small uncertainties in \(\sigma_0(p_T^{\text{cut}}) \) arise from cancellation between two series with large corrections
Division Into Jet Bins

To first approximation, one should treat perturbative series in σ_{total}, $\sigma_{\geq 1}$, $\sigma_{\geq 2}$ as independent with uncorrelated perturbative uncertainties, i.e.

1. Consider \textit{inclusive} jet cross sections

$$\sigma_{\text{total}}, \sigma_{\geq 1}, \sigma_{\geq 2} \Rightarrow C = \begin{pmatrix} \Delta_{\text{total}}^2 & 0 & 0 \\ 0 & \Delta_{\geq 1}^2 & 0 \\ 0 & 0 & \Delta_{\geq 2}^2 \end{pmatrix}$$

2. Transform to \textit{exclusive} jet cross sections

$$\sigma_0 = \sigma_{\text{total}} - \sigma_{\geq 1}, \quad \sigma_1 = \sigma_{\geq 1} - \sigma_{\geq 2}, \quad \sigma_{\geq 2} \Rightarrow C = \begin{pmatrix} \Delta_{\text{total}}^2 + \Delta_{\geq 1}^2 & -\Delta_{\geq 1}^2 & 0 \\ -\Delta_{\geq 1}^2 & \Delta_{\geq 1}^2 + \Delta_{\geq 2}^2 & -\Delta_{\geq 2}^2 \\ 0 & -\Delta_{\geq 1}^2 & \Delta_{\geq 2}^2 \end{pmatrix}$$
Realistic Fixed-Order Scale Uncertainties

- Uncertainties reproduce naive scale variation at large cut values
- Larger uncertainties at small cut values → take into account presence of large logarithmic corrections

\[p_T^{\text{cut}} = 30 \text{ GeV} \]

<table>
<thead>
<tr>
<th>method</th>
<th>$\Delta \sigma_{\text{total}}$</th>
<th>$\Delta \sigma_0$</th>
<th>$\Delta \sigma_1$</th>
<th>$\Delta \sigma_{\geq 2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>naive</td>
<td>10%</td>
<td>5%</td>
<td>14%</td>
<td>45%</td>
</tr>
<tr>
<td>new</td>
<td>10%</td>
<td>17%</td>
<td>29%</td>
<td>45%</td>
</tr>
</tbody>
</table>
Resummation at NNLL+NNLO
Resummation of Jet-Veto Logarithms

\[L^2 = 2 \ln^2 \frac{p_T^{\text{cut}}}{m_H} \quad \text{or} \quad L^2 = \ln^2 \frac{T_{\text{cut}}}{m_H} \]

\[\sigma_{0\text{-jet}} = 1 + \alpha_s L^2 + \alpha_s L + \alpha_s + \alpha_s n_1(p_T^{\text{cut}}) + \alpha_s^2 L^4 + \alpha_s^2 L^3 + \alpha_s^2 L^2 + \alpha_s^2 L + \alpha_s^2 + \alpha_s^2 n_2(p_T^{\text{cut}}) \quad \text{NLO} \]

\[+ \alpha_s^3 L^6 + \alpha_s^3 L^5 + \alpha_s^3 L^4 + \alpha_s^3 L^3 + \alpha_s^3 L^2 + \alpha_s^3 L + \cdots \]

Initial-state parton shower resums LL

- Pythia/Herwig is LL (plus some NLL)
- MC@NLO, POWHEG: combine parton-shower LL with fixed NLO
Resummation of Jet-Veto Logarithms

\[L^2 = 2 \ln^2 \frac{p_T^{\text{cut}}}{m_H} \quad \text{or} \quad L^2 = \ln^2 \frac{T_{cm}^{\text{cut}}}{m_H} \]

\[\sigma_{0\text{-jet}} = 1 \]

\[+ \ \alpha_s L^2 + \alpha_s L + \alpha_s + \alpha_s n_1(p_T^{\text{cut}}) \]

\[+ \ \alpha_s^2 L^4 + \alpha_s^2 L^3 + \alpha_s^2 L^2 + \alpha_s^2 L + \alpha_s^2 + \alpha_s^2 n_2(p_T^{\text{cut}}) \]

\[+ \ \alpha_s^3 L^6 + \alpha_s^3 L^5 + \alpha_s^3 L^4 + \alpha_s^3 L^3 + \alpha_s^3 L^2 + \alpha_s^3 L + \ldots \]

\[+ \ : \ + \ : \ + \ : \ + \ : \ + \ : \ + \ : \ + \ldots \]

\[\text{LL} \quad \text{NLL} \quad \text{NNLL} \quad \text{N}^3\text{LL} \]

Initial-state parton shower resums LL

- Pythia/Herwig is LL (plus some NLL)
- MC@NLO, POWHEG: combine parton-shower LL with fixed NLO

Our calculation: NNLL+NNLO

- Resummation using \(T_{cm}^{\text{cut}} \) and SCET \(\rightarrow \) two orders beyond PS
- \(n_{1,2}(T_{cm}^{\text{cut}}) \) numerically from FEHiP \(\rightarrow \) reproduces full NNLO
Soft-Collinear Effective Theory (SCET)

[Bauer, Fleming, Pirjol, Stewart]

A general framework derived from QCD with which we can study what goes on before and after the hard interaction

Soft

Low-energy particles without preferred direction

Collinear

Energetic jets along incoming and outgoing directions
Soft-Collinear Effective Theory (SCET)

[Bauer, Fleming, Pirjol, Stewart]

A general framework derived from QCD with which we can study what goes on before and after the hard interaction

Soft
Low-energy particles without preferred direction

Collinear
Energetic jets along incoming and outgoing directions

Advantages of SCET

- Clear separation of different contributions from different energy scales
 - Makes it easier to find the right probability formula for a given problem
 - Can expand in α_s when possible, work to all orders otherwise

- All required approximations are made explicit
 - Corrections can be computed systematically
Factorization for Exclusive Jet Cross Sections

Contributions appear at different physical energy scales \Rightarrow Factorization

\[d\sigma = \text{hard interaction} \otimes \text{PDFs} \otimes \text{ISR} \otimes \text{FSR} \otimes \text{soft radiation} \]

\[d\sigma = H_N \times \left((f_{a,b} \otimes I_{a,b}) \times \prod_{j=1}^{N} J_j \right) \otimes S_N \]

- SCET allows us to derive factorized cross section
 - Precise form depends on the specific observable
 - Each function has a precise definition in the effective field theory
Factorization Theorem for Beam Thrust

\[
\frac{d\sigma}{dT_{cm}} = H_{gg}(\mu) \int dt_a dt_b B_g(t_a, \mu) B_g(t_b, \mu) S_{gg}^B \left(T_{cm} - \frac{t_a + t_b}{m_H}, \mu \right)
\]
Factorization Theorem for Beam Thrust

\[
\frac{d\sigma}{dT_{\text{cm}}} = H_{gg}(\mu) \int dt_a dt_b \ B_g(t_a, \mu) \ B_g(t_b, \mu) \ S_{gg}^B \left(T_{\text{cm}} - \frac{t_a + t_b}{m_H}, \mu \right)
\]

Logarithms are split apart and resummed using RGE

\[
\ln^2 \frac{T_{\text{cm}}}{m_H} = 2 \ln^2 \frac{m_H}{\mu} - \ln^2 \frac{T_{\text{cm}} m_H}{\mu^2} + 2 \ln^2 \frac{T_{\text{cm}}}{\mu}
\]

\[\Rightarrow \mu_H \simeq m_H, \mu_B \simeq \sqrt{T_{\text{cm}} m_H}, \mu_S \simeq T_{\text{cm}}\]
Perturbative uncertainties can now be determined from independent scale variations

1. Overall scale by factor of 2
 - Equivalent to FO scale variation
 - Gives uncertainties at large cut

2. $\mu_B(T_{cm})$ profile
3. $\mu_S(T_{cm})$ profile
 - Dominate at small cut
 - Explicitly take into account uncertainties due to logarithms

\Rightarrow Combine in quadrature $\max(\mu_H)$ and $\max(\mu_B, \mu_S)$ variations

Frank Tackmann (MIT)
Convergence of Resummed Perturbation Theory

- Perturbative corrections are sizable
- Resummed perturbation theory shows good convergence with reliable uncertainties
Comparison of Fixed Order and Resummation

![Graph showing comparison of fixed order and resummation at NNLL+NNLO](image)

- **Resummation** is important to get the best central value and uncertainties.

- Scale uncertainty at NNLL+NNLO is 10–20\% → still larger than naive FO.

- It is feasible to further reduce uncertainties by going to N^{3}LL.

- Irreducible $pp \rightarrow WW$ background with the same cut can be computed using the same methods.
More Jets
N-Jettiness Event Shape

\[\mathcal{T}_N = \sum_k |\vec{p}_{kT}| \min\{d_{a}(p_k), d_{b}(p_k), d_1(p_k), d_2(p_k), \ldots, d_N(p_k)\} \]

- \(d_{a,b}(p_k), d_j(p_k) \): Distance of particle \(k \) to beam and jet directions
- Divides phase space into \(N \) jet regions and 2 beam regions
N-Jettiness Event Shape

\[\mathcal{T}_N = \sum_k |\vec{p}_{kT}| \min\{d_a(p_k), d_b(p_k), d_1(p_k), d_2(p_k), \ldots, d_N(p_k)\} \]

\[\equiv \mathcal{T}^a_N + \mathcal{T}^b_N + \mathcal{T}^1_N + \cdots + \mathcal{T}^N_N \]

- \(d_{a,b}(p_k), d_j(p_k)\): Distance of particle \(k\) to beam and jet directions
- Divides phase space into \(N\) jet regions and 2 beam regions
- Can measure separate contribution from each region

For small \(\mathcal{T}^i_N\) final state contains exactly \(N\) jets

⇒ Enforcing small beam-thrust components \(\mathcal{T}^a_N + \mathcal{T}^b_N\) eliminates contamination from ISR
N-Jettiness with Geometric Measure

\[\mathcal{T}_N = \sum_k |\vec{p}_k T| \min \{ d_a(p_k), d_b(p_k), d_1(p_k), d_2(p_k), \ldots, d_N(p_k) \} \]

\[\equiv \mathcal{T}_N^a + \mathcal{T}_N^b + \mathcal{T}_N^1 + \cdots + \mathcal{T}_N^N \]

Geometric measure

\[d_{\alpha,\beta}(p_k) = e^{\mp \eta_k} \]

\[d_j(p_k) = 2 \cosh \Delta \eta_{jk} - 2 \cos \Delta \phi_{jk} \approx (\Delta \eta_{jk})^2 + (\Delta \phi_{jk})^2 \]

- Yields almost circular jets with size determined by \(\eta \)
- \(\mathcal{T}_N^j \) determines mass of jet: \(M_j^2 = |\vec{p}_T^j| \mathcal{T}_N^j \)
Factorization for N-Jet Production

- *Exclusive* N-jet cross section contains similar double logarithms from restricting ISR and FSR

⇒ Can be resummed using N-jettiness

Explicit factorization formula is known for N-jettiness

\[
\frac{d\sigma}{d\mathcal{T}^a_N \, d\mathcal{T}^b_N \, d\mathcal{T}^1_N \cdots d\mathcal{T}^N_N} = H_N \left[B_a \times B_b \times \prod_{j=1}^{N} J_j \right] \otimes S_N
\]

⇒ All necessary ingredients for resummation at NNLL are available for any process for which virtual NLO diagrams are known such as \(H + 1, 2 \) jets
Factorization for N-Jet Production

- *Exclusive* N-jet cross section contains similar double logarithms from restricting ISR and FSR

⇒ Can be resummed using N-jettiness

Explicit factorization formula is known for N-jettiness

\[
\frac{d\sigma}{d T^a_N d T^b_N d T^1_N \cdots d T^N_N} = H_N \left[B_a \times B_b \times \prod_{j=1}^{N} J_j \right] \otimes S_N
\]

⇒ All necessary ingredients for resummation at NNLL are available for any process for which virtual NLO diagrams are known such as $H + 1, 2$ jets

More applications

- N-jettiness applied to jet substructure: N-subjettiness [Kim; Thaler, Tilburg]
 - As powerful as other methods to identify boosted heavy objects
 - Theoretically clean and factorizable
Summary and Outlook

One must be careful when applying fixed-order calculations and evaluating perturbative uncertainties:

- $H + 0 \text{ jets}$ cross section has typical behavior of a kinematic endpoint region involving large Sudakov logarithms.
- The same logarithms also appear for $H + \geq 1 \text{ jets}$.

\Rightarrow The same applies to new-physics measurements using jets.

SCET provides a powerful formalism to analyze processes with jets:

- Can combine fixed order with a resummation of logarithms appearing in exclusive jet cross sections.
- Resummation provides more handles to reliably evaluate theory uncertainties.

Extension to N jets:

- N-jettiness provides a theoretically ideal exclusive N-jet algorithm.
- All ingredients are available for resummation at NNLL+NLO.
Physical Picture of Initial State

Measurement probes PDFs at some intermediate scale μ_B

$\mu < \mu_B$: On-shell partons “inside” incoming proton
- ISR captured by PDF evolution, redistributes momentum fraction x

incoming beam

μ_{Λ} changing x μ_B μ_H

hard interaction
Physical Picture of Initial State

Measurement probes PDFs at some intermediate scale μ_B

$\mu < \mu_B$: On-shell partons “inside” incoming proton
- ISR captured by PDF evolution, redistributes momentum fraction x

$\mu > \mu_B$: Off-shell parton ($-t < 0$) part of incoming jet
- Colliding parton emits collinear and soft ISR “outside” proton
- ISR goes into final state and is measured by jet veto
\(\pi^2 \) Resummation

- **Hard virtual corrections contain large \(\ln^2 (-1 - i0) = -\pi^2 \) terms**

 \[
 H_{gg}(m_H, \mu_H) \propto 1 - \frac{\alpha_s(\mu_H) C_A}{2\pi} \ln^2 \frac{-m_H^2 - i0}{\mu_H^2} + \ldots
 \]

 - Convergence improves significantly when \(\ln^2 (-1) \) are also resummed

 \(\Rightarrow \) Large K factors mostly from hard virtual corrections
Reproducing Fixed Order Result at Large T_{cm}

At large T_{cm} (no jet veto)

- Exactly reproduce central value and uncertainties of fixed NNLO (using $\mu_{FO} = m_H$)

NNLL+NNLO with π^2 summation (default) vs. fixed NNLO (using $\mu_{FO} = m_H/2$)

- Central values agree at large T_{cm}
- π^2 summation also reduces scale uncertainty in total cross section
 - $+3\%, -5\%$ at LHC
 - $+5\%, -9\%$ at Tevatron