On New Physics Explanations of the Tevatron Top Forward-Backward Asymmetry

Moira Gresham*
work in collaboration with
Ian-Woo Kim and Kathryn Zurek
at the University of Michigan
[arXiv:1103.3501]

Implications of EWSB Workshop
May 7-8, 2011

*Supported by the Michigan Society of Fellows
incoming proton → outgoing top

incoming anti-proton → outgoing anti-top

forward:

backward:

(top forward-backward asymmetric) =

(#{forward forward tops}) - (#{backward backward tops})

(total # of tops)
Let \(y = \text{rapidity with respect to forward direction.} \)

\[(\text{lab frame})\]

\[
A^{p\bar{p}} = \frac{N(y_t^{p\bar{p}} > 0) - N(y_t^{p\bar{p}} < 0)}{N(y_t^{p\bar{p}} > 0) + N(y_t^{p\bar{p}} < 0)}
\]

\[(t\bar{t} \text{ CM frame})\]

\[
A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}
\]

\[
\Delta y \equiv y_t - y_{\bar{t}} = 2y_t^{t\bar{t}}
\]

Mass-dependent asymmetry:

\[
A^{t\bar{t}}(m_{t\bar{t},i}) = \frac{N(\Delta y > 0, m_{t\bar{t},i}) - N(\Delta y < 0, m_{t\bar{t},i})}{N(\Delta y > 0, m_{t\bar{t},i}) + N(\Delta y < 0, m_{t\bar{t},i})}
\]
Standard Model asymmetry is zero at leading order.

Small, positive asymmetry at NLO.

image credit: CDF arXiv:1101.0034
Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production (CDF, [arXiv:1101.0034])

• Reconstructed tops in events with semileptonic top pair decay signature.
• Assumed:

\[y_t^{p\bar{p}} = -qy_h \quad \Delta y = q(y_l - y_h) \]

where

\[y_h = y_{\text{hadronic top}} \quad y_l = y_{\text{leptonic top}} \]
\[q = \text{sign of lepton} \]

• Provided raw, background-subtracted and unfolded “parton level” results
CDF [arXiv:1101.0034]

<table>
<thead>
<tr>
<th>A_{FB}^{tt}</th>
<th>$m_{tt} < 450$ GeV</th>
<th>$m_{tt} > 450$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>bkd-sub data</td>
<td>$-0.022 \pm 0.039 \pm 0.017$</td>
<td>$0.266 \pm 0.053 \pm 0.032$</td>
</tr>
<tr>
<td>MC@NLO</td>
<td>0.015 ± 0.006</td>
<td>0.043 ± 0.009</td>
</tr>
<tr>
<td>parton data</td>
<td>$-0.116 \pm 0.146 \pm 0.047$</td>
<td>$0.475 \pm 0.101 \pm 0.049$</td>
</tr>
<tr>
<td>MC@NLO</td>
<td>0.040 ± 0.006</td>
<td>0.088 ± 0.013</td>
</tr>
</tbody>
</table>

$\Delta = -1\sigma$

1260 events passed selection, 283+/− 91 estimated background
CDF [arXiv:1101.0034]

<table>
<thead>
<tr>
<th>A_{FB}^{tt}</th>
<th>$m_{tt} < 450$ GeV</th>
<th>$m_{tt} > 450$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>bkd-sub data</td>
<td>$-0.022 \pm 0.039 \pm 0.017$</td>
<td>$0.266 \pm 0.053 \pm 0.032$</td>
</tr>
<tr>
<td>MC@NLO</td>
<td>0.015 ± 0.006</td>
<td>0.043 ± 0.009</td>
</tr>
<tr>
<td>parton data</td>
<td>$-0.116 \pm 0.146 \pm 0.047$</td>
<td>$0.475 \pm 0.101 \pm 0.049$</td>
</tr>
<tr>
<td>MC@NLO</td>
<td>0.040 ± 0.006</td>
<td>0.088 ± 0.013</td>
</tr>
</tbody>
</table>

1260 events passed selection, 283+/- 91 estimated background
<table>
<thead>
<tr>
<th>sample</th>
<th>level</th>
<th>(A^{tt})</th>
<th>(A^{p\bar{p}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>data</td>
<td>0.057 ± 0.028</td>
<td>0.073 ± 0.028</td>
</tr>
<tr>
<td>MC@NLO</td>
<td>(t\bar{t} + \text{bkg})</td>
<td>0.017 ± 0.004</td>
<td>0.001 ± 0.003</td>
</tr>
<tr>
<td>data</td>
<td>signal</td>
<td>0.075 ± 0.037</td>
<td>0.110 ± 0.039</td>
</tr>
<tr>
<td>MC@NLO</td>
<td>(t\bar{t})</td>
<td>0.024 ± 0.005</td>
<td>0.018 ± 0.005</td>
</tr>
<tr>
<td>data</td>
<td>parton</td>
<td>0.158 ± 0.074</td>
<td>0.150 ± 0.055</td>
</tr>
<tr>
<td>MCFM</td>
<td>parton</td>
<td>0.058 ± 0.009</td>
<td>0.038 ± 0.006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sample</th>
<th>level</th>
<th>A^{tt}</th>
<th>A^{pp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>data</td>
<td>0.057 ± 0.028</td>
<td>0.073 ± 0.028</td>
</tr>
<tr>
<td>MC@NLO</td>
<td>$t\bar{t} + bkg$</td>
<td>0.017 ± 0.004</td>
<td>0.001 ± 0.003</td>
</tr>
<tr>
<td>data</td>
<td>signal</td>
<td>0.075 ± 0.037</td>
<td>0.110 ± 0.039</td>
</tr>
<tr>
<td>MC@NLO</td>
<td>$t\bar{t}$</td>
<td>0.024 ± 0.005</td>
<td>0.018 ± 0.005</td>
</tr>
<tr>
<td>data</td>
<td>parton</td>
<td>0.158 ± 0.074</td>
<td>0.150 ± 0.055</td>
</tr>
<tr>
<td>MCFM</td>
<td>parton</td>
<td>0.058 ± 0.009</td>
<td>0.038 ± 0.006</td>
</tr>
</tbody>
</table>

$\Delta = 1.4\sigma$ \hspace{1cm} $\Delta = 2.3\sigma$
The predicted Standard Model top asymmetry is significantly lower than the measured asymmetry, especially for $t\bar{t}$ events with large invariant mass ($m_{t\bar{t}} > 450$ GeV).
Independent confirmation:

Measurement of the Forward Backward Asymmetry in Top Pair Production in the Dilepton Decay Channel using 5.1 fb
(CDF, March 2011)

\[
\begin{align*}
A_{\text{obs}}^{<450 \text{ GeV}} &= 0.104 \pm 0.066 \text{(stat.)} \quad \text{(Pred. : } 0.003 \pm 0.031) \\
A_{\text{obs}}^{>450 \text{ GeV}} &= 0.212 \pm 0.096 \text{(stat.)} \quad \text{(Pred. : } -0.040 \pm 0.055)
\end{align*}
\]

Measurement of the forward-backward production asymmetry of \(t \) and \(\bar{t} \) quarks in \(p\bar{p} \rightarrow tt \) events (D0, July 2010)

\[
A_{fb} = (8 \pm 4 \text{ (stat)} \pm 1 \text{ (syst)})\% \quad \text{and} \quad A_{fb}^{\text{pred}} = (1^{+2}_{-1} \text{ (syst)})\%.
\]
Independent confirmation:

Measurement of the Forward Backward Asymmetry in Top Pair Production in the Dilepton Decay Channel using 5.1 fb (CDF, March 2011)

$$A_{\text{obs}} < 450 \text{ GeV} = 0.104 \pm 0.066(\text{stat.})$$ \hspace{1cm} (Pred. : 0.003 ± 0.031)

$$A_{\text{obs}} > 450 \text{ GeV} = 0.212 \pm 0.096(\text{stat.})$$ \hspace{1cm} (Pred. : -0.040 ± 0.055)

$$\Delta = 1.4\sigma$$

$$\Delta = 2.3\sigma$$

Measurement of the forward-backward production asymmetry of t and \bar{t} quarks in $p\bar{p} \rightarrow tt$ events (D0, July 2010)

$$A_{fb} = (8 \pm 4\, (\text{stat}) \pm 1\, (\text{syst}))\%$$ \hspace{1cm} $A_{fb}^{\text{pred}} = (1^{+2}_{-1}\, (\text{syst}))\%$.
How to produce a large asymmetry:

s channel
- nonzero axial couplings

![Diagram of s channel](image)

t channel

- Top flavor-carrying...
- Color octet (with maximally axial couplings to light quarks and to top quarks) aka an axigluon
- ...
Main goals:

• Reassess the viability of new physics models proposed to explain the top forward-backward asymmetry in light of new CDF measurements.

• Investigate subtleties associated with unfolding the “raw” asymmetry to a “parton level” asymmetry for more direct comparison to theory.
Mass-dependent asymmetry unfolding

\[\vec{n}_{\text{signal}} = S A \vec{n}_{\text{parton}} \]

- \(\Delta y \)
- +

\[
\begin{array}{cc}
 n_{LB} & n_{LF} \\
 n_{HB} & n_{HF} \\
\end{array}
\]

A : Acceptance (diagonal)
S : Bin-to-bin migration

(derived through simulations (of SM events... and checked against axigluon events). CAUTION)

\[\vec{n}_{\text{parton}} = A^{-1} S^{-1} (\vec{n}_{\text{data}} - \vec{n}_{\text{bkg}}) \]
Mass-dependent asymmetry unfolding

\[\vec{n}_{\text{signal}} = SA \vec{n}_{\text{parton}} \]

- \(\Delta y \) +

\[\begin{array}{cc}
 n_{LB} & n_{LF} \\
 n_{HB} & n_{HF} \\
\end{array} \]

\(A \) : Acceptance (diagonal)

\(S \) : bin-to-bin migration

(derived through simulations (of SM events... and checked against axigluon events). CAUTION)

\[\vec{n}_{\text{parton}}^{\text{CDF}} = A^{-1}_{\text{SM}} S^{-1}_{\text{SM}} (\vec{n}_{\text{data}} - \vec{n}_{\text{bkg}}) \]
\(A_{FB}(m_{\bar{t}t} > 450 \text{ GeV}) \)

\(\sigma \) (pb, leading order, no K factor)
Parton level mass- and rapidity-dependent asymmetries
Parton level mass- and rapidity-dependent asymmetries
Parton level differential cross section
Conclusions after parton level comparison:

• Z' does best at getting a steep rise in the asymmetry as a function of $m_{\bar{t}t}$.

• Sextets and triplets do marginally better than the SM at producing the asymmetry, but to produce these larger asymmetries the total production cross-section must be quite large.

• Axigluons with large enough mass to avoid dijet constraints can produce an asymmetry only slightly larger the the SM asymmetry, though the total cross-section looks ok.

• The differential cross-section for all models producing reasonably large asymmetries appears to be in conflict with measurement.
But...
Implications of EWSB Workshop

Moira Gresham

May 7-8, 2011
benchmark models (piped through Pythia/PGS)

$A_{FB}(m_{t\bar{t}} > 450 \text{ GeV})$

$\sigma (\text{pb, leading order, no K factor})$

SM

$Z_{H'}$

W

Triplet

Sextet

Axigluon

May 7-8, 2011

Implications of EWSB Workshop

Moira Gresham
CM frame mass-dependent asymmetry
Jet multiplicity dependence of asymmetry
Mass-dependent asymmetry partitioned by lepton charge
Frame dependence of asymmetry

- 400 GeV $Z_{h'}$, $g=1.75$, 400 GeV W, $g=2.55$
- 600 GeV Triplet, $g=4.4$, 1.4 TeV Sextet, $g=4.0$
- 2 TeV Axigluon, $g_a=-g_{a'}=2.4$, 800 GeV $Z_{h'}$, $g=3.4$
Implications of EWSB Workshop

Moira Gresham

May 7-8, 2011
Conclusions after data level comparison:

• Z' and W' benchmark models do the best at matching the mass-dependent asymmetry data, though the axigluon and triplet benchmarks don’t look so bad.

• None of the benchmark models get the frame-dependent asymmetry quite right.

• The invariant mass spectrum for triplet and high mass Z' events differs substantially from the CDF measurement.

• The invariant mass spectrum for the low mass Z' and W' benchmark events agrees reasonably well with measurement at high invariant mass.

• It appears as if efficiency effects indeed brought the Z' and W' into agreement with measurement even though these models appeared to disagree with the invariant mass spectrum measurement at parton level.
If there’s time...
If:

\[\begin{align*} &q \\ &\bar{q} \end{align*} \rightarrow \begin{align*} &\tilde{t} \\ &\tilde{t} \end{align*} \]

(M: top flavor-carrying mediator)

then there necessarily exists:

(colored states only)
$\bar{t}j$ resonance in $t\bar{t}j$ events (Z', W')

tj resonance in $tt\bar{t}j$ events (triplet, sextet)
LHC Reach [arXiv:1102.0018]